Breaking avalanches in the limit of high disorder of the fiber bundle model

Zsuzsa Danku, Viktória Kádár, Gergő Pál and Ferenc Kun Department of Theoretical Physics University of Debrecen

0 disorder

Perfectly brittle fracture

0 disorder

Perfectly brittle fracture

Macroscopic properties

Lower strength

 $\sigma_c \ll E$ Concrete: $E \sim GPa$ $\sigma_c \sim MPa$

Varying strength

 $p(\sigma_c)$ Weibull distribution $P(\sigma_c) = 1 - e^{-\left(\frac{\sigma_c}{\lambda}\right)^m}$

0 disorder

Perfectly brittle fracture

Macroscopic properties

Lower strength

 $\sigma_c \ll E$ Concrete: $E \sim GPa$ $\sigma_c \sim MPa$

Varying strength

 $p(\sigma_c)$ Weibull distribution $P(\sigma_c) = 1 - e^{-\left(\frac{\sigma_c}{\lambda}\right)^m}$

Size effect

 $\sigma_c \sim 1/\log L$ Decreasing strength

The role of disorder 0 disorder Perfectly brittle Gradual breaking fracture Precursors Macroscopic properties Microscopic dynamics Acoustic emissions Lower strength $\sigma_c \ll E$ cracks Concrete: $E \sim GPa$ $\sigma_c \sim MPa$ Varying strength elastic waves Weibull distribution $p(\sigma_c)$ 1.00 0.8 $P(\sigma_c) = 1 - e^{-\left(\frac{\sigma_c}{\lambda}\right)^m}$ 0.60 ω 0.4 Size effect 0.20 $\sigma_c \sim 1/\log L$ Decreasing strength 0.0 0.00 0.40 P/Pc A. Guarino et al., Eur. Phys. J. B 6, 13 (1998)

The fiber bundle model

- Discrete set of parallel fibers
- ✤ The same Young modulus E
- Load parallel to fibers
- Perfectly brittle behaviour
- * Breaks instantaneously, if $\sigma_i > \sigma_{th}^i$

Stochastic failure thresholds

 $g(\sigma_{\scriptscriptstyle th})$

- ✤ Quasi-static loading
- * Equal load redistribution

Intermediate disorder

Realization of strong disorder

Fat tailed distribution of the failure thresholds

V. Kadar, Zs. Danku, F. Kun, Physical Review E 96, 033001 (2017).

Macroscopic response and size effect

Macroscopic behaviour

Constitutive equation

$$\sigma(\varepsilon) = \begin{cases} \varepsilon, & 0 \le \varepsilon \le \varepsilon_{min} \\ \frac{\varepsilon(\varepsilon^{-\mu} - \varepsilon_{max}^{-\mu})}{\varepsilon_{min}^{-\mu} - \varepsilon_{max}^{-\mu}}, & \varepsilon_{min} \le \varepsilon \le \varepsilon_{max} \\ 0, & \varepsilon_{max} < \varepsilon \end{cases}$$

$$\varepsilon_{min} = \sigma_{th}^{min} / E$$

 $\varepsilon_{max} = \sigma_{th}^{max} / E$

$$\mu = 0.5$$
, $\sigma_{th}^{max} = 20$

Macroscopic strength

Critical stress

 σ_{c}

Critical strain

 $\mathcal{E}_{\mathcal{C}}$

Macroscopic behaviour

Phase boundary

$$\varepsilon_{max}^{c} = \frac{\varepsilon_{min}}{(1-\mu)^{1/\mu}}$$
$$\varepsilon_{max} < \varepsilon_{max}^{c}$$
$$\varepsilon_{max} > \varepsilon_{max}^{c}$$

Brittle Quasi-brittle

 $\lambda = \varepsilon_{max} / \varepsilon_{max}^c$ $\lambda \ge 1$

V. Kadar, Zs. Danku, F. Kun, Physical Review E 96, 033001 (2017).

Size scaling of failure strength

Characteristic system size $N_c \sim \varepsilon_{max}^{\mu}$

 $N < N_c$ $\langle \varepsilon_c \rangle(N) = \langle \varepsilon_{th}^{max} \rangle_N = P^{-1} \left(1 - \frac{1}{N+1} \right)$ $\langle \varepsilon_c \rangle = \left[\left((\varepsilon_{th}^{max})^{-\mu} - (\varepsilon_{th}^{min})^{-\mu} \right) \left(1 - \frac{1}{N+1} \right) + (\varepsilon_{th}^{min})^{-\mu} \right]^{-\frac{1}{\mu}}$ $\langle \varepsilon_c \rangle (N) \sim N^{1/\mu}$ ₁₀⁶ | a) λ $\bigwedge_{\substack{\omega \\ \vee}} 10^4$ \bigcirc 10000 **1**1 • 10 $\triangle 20000$ **1**00 ◇ 50000 10◆ 1000 $\star 100000$ □ 5000 -500000 10^4 10^5 N 10^{3} $10^6 10^7$ 10^{2}

Size scaling of failure strength

Characteristic system size $N_c \sim \varepsilon_{max}^{\mu}$

$$N < N_c$$
 $\langle \varepsilon_c \rangle(N) = \langle \varepsilon_{th}^{max} \rangle_N = P^{-1} \left(1 - \frac{1}{N+1} \right)$ $N > N_c$

$$\langle \varepsilon_N \rangle(N) = \varepsilon_c(\infty) + AN^{-2/3}$$

V. Kadar, Zs. Danku, F. Kun, Physical Review E 96, 033001 (2017).

Avalanche statistics in the limit of high disorder

Microscopic dynamics of fracture, $\lambda = +\infty$

No signs of macroscopic failure

Burst size distribution

Scaling

V. Kadar and F. Kun, Physical Review E 100, 053001 (2019).

 $\upsilon = 2$

Microscopic dynamics of fracture, finite cutoffs

Time series

Acceleration towards failure

 $\mu \to 0$

$$\tau: 3/2$$

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2$

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$

 Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$

 Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

 $\lambda \to \infty$

τ: 3/2

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$

 Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

 $\lambda \to \infty$

 $\tau: 3/2 \to 3/2 + 5/2$

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$

 Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

$$\lambda \to \infty$$

 $\tau: 3/2 \to 3/2 + 5/2$
 $\lambda \to 1$ $\Delta_0 \sim (\lambda - 1)^{-\gamma}, \qquad \gamma = 2$

 $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$

 Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

$$\lambda \to \infty$$

 $\tau: 3/2 \to 3/2 + 5/2 \to 3/2$
 $\lambda \to 1$ $\Delta_0 \sim (\lambda - 1)^{-\gamma}, \quad \gamma = 2$

λ

- $\mu \rightarrow 0$ $\tau: 3/2 \rightarrow 3/2 + 5/2 \rightarrow 5/2$
- Δ_0 : crossover burst size

$$\mu \to \mu_c(\varepsilon_{max}) \qquad \Delta_0 \sim (\mu_c - \mu)^{-\gamma}, \qquad \gamma = 2$$

$$\lambda \to \infty$$

 $\tau: 3/2 \to 3/2 + 5/2 \to 3/2$
 $\lambda \to 1$ $\Delta_0 \sim (\lambda - 1)^{-\gamma}, \quad \gamma = 2$

λ

Only the first L bursts are included in $p(\Delta)$

Only the first L bursts are included in $p(\Delta)$

Only the first L bursts are included in $p(\Delta)$

Beginning of series is close to stationary

Only the first L bursts are included in $p(\Delta)$

Beginning of series is close to stationary

Sort accelerating regime

Diminishing contribution

Only the first L bursts are included in $p(\Delta)$

Beginning of series is close to stationary

Sort accelerating regime

Diminishing contribution

Size dependence of burst distributions

Size dependence of burst distributions

Size dependence of burst distributions

System size has a strong effect on the functional form

System size dependence of catastrophic burst

 $\mu = 0.8$

Macroscopic failure may not be predictable

Thank you for your attention!

For further information see:

- Zs. Danku, and F. Kun J. Stat. Mech. 2016, 073211 (2016)
- V. Kadar, Zs. Danku, F. Kun, Physical Review E 96, 033001 (2017)
- V. Kadar and F. Kun, Physical Review E 100, 053001 (2019)
- V. Kadar, G. Pal, and F. Kun, Scientific Reports 10, 2508 (2020)
- V. Kadar, Zs. Danku, G. Pal, and F. Kun, Physica A 594, 127015 (2022)