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What is fatigue?

▶ Material response to
repetitive loading

▶ Important for many
practical applications

SS Schenectady

▶ Apparent self-similarity
(Paris–Erdogan law)

da
dN

∝ ∆K m

▶ a crack length
▶ N loading cycles
▶ K stress intensity factor
▶ ∆K = Kmax − Kmin
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Fatigue protocol

K

t

Kmax

R = 0.1

R = 0.5 R = 0.9

▶ the goal here is to explore
the intermittent crack
growth in fatigue
[Kokkoniemi et al, JSTAT
2017] and the crossover to
creep

▶ Asymmetry coefficient
R = Kmin

Kmax

▶ Creep as the limiting case
R = 1

▶ sort of similar to the Oslo
Plexiglas experiments
[Måløy et al, PRL 2006] but
for a geometry more
commonly used in the field
of material science
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Experimental setup
Raw image

Tracking

Camera

Specimen

Crack

Lomakin et al, PRResearch 2021

▶ CT-specimens of 1050 Al
alloy

▶ 10 Hz loading frequency,
0.25 Hz imaging frequency

▶ crack tip position tracked
from the images

▶ transparent PMMA
▶ placing the camera at an

angle allows the tracking of
a fracture line

▶ 1 Hz loading frequency, 1
Hz imaging frequency
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Naive attempt from creep to fatigue

Thermally activated process v = vc exp (−β∆E)

Below depinning threshold ∆E = 1
βd

[(
G
Gc

)−µ
− 1

]
, G ∝ K 2

Integrate the velocity over the loading cycle

vfat =
∆a
∆N

=

∫ 1/f

0
v dt = vce

β
βd

∫ 1/f

0
exp

[
− β

βd

(
K (t)
Kc

)−2µ
]

dt

where K (t) = Kmax+Kmin
2 + ∆K

2 sin (2πft)

Saddle-point integration gives vfat ∝ K µ
max exp

[
− β

βd

(
Kmax
Kc

)−2µ
]
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Aluminum samples
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PMMA samples – local velocities
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a 1D crack
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▶ a power-law distributed tail with
an exponent of roughly 2

▶ not much variation in the
distribution

▶ Oslo experiments [Måløy et al,
PRL 2006] had an exponent 2.55
(for the normalized velocity)
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PMMA samples – avalanche sizes
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▶ still a power-law with an exponent
of roughly 2

▶ again not much variation in the
distribution

▶ Oslo experiments [Måløy et al,
PRL 2006] had an exponent
around 1.5-1.7 (some variation
depending on the methodology)
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PMMA samples – Paris curves
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▶ the crack velocity considered as
the time derivative of the mean
crack position ⟨a⟩

▶ there is a lot of sample-to-sample
variation in this mean velocity
▶ the variation seems to increase

with increasing R
▶ two regimes

▶ related to the strain rate
sensitivity of PMMA?

▶ the naive brittle approach
works for the end part of the
experiments
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PMMA samples – front shape
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▶ the large velocity fluctuations
might be related to variations in
the front shape
▶ pinning at some defect
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Conclusions

▶ creep is messy
▶ PMMA is messy
▶ plasticity is messy

▶ our plan is to repeat same
studies with glass

▶ somehow taking the front
shape into account might
also be good

▶ the local dynamics seem
fairly constant with varying
loading conditions

▶ the "universal" exponent of
2 is high
▶ this might partially be

explained by the
nonstationarity of the
velocity
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