The LabQuakes project: from a granular fault to earthquake statistics
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Some open questions in scale-invariant avalanches

f. Physics of scale-invariant avalanches

Phase transitions
Critical dynamics
o /\f:redictability
Scale-invariance ? Inherently impossible?
Origin? . Memory effects
Robustness? Prediction of catastrophic events?
Common features: Critical properties

Clustering, memory? _ _
Universality classes?

Experiments: Not-robust exponent values & exponent values larger than 3/2
Diverging correlation lengths?



Elastic line in a disordered landscape

PHYSICAL REVIEW E 79, 051106 (2009)

Size distributions of shocks and static avalanches from the functional renormalization group

Pierre Le Doussal and Kay Jorg Wiese
Laboratoire de Physique Théorique de I’Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75231 Paris Cedex, France T

(Received 20 January 2009; published 7 May 2009)

Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We
study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an
external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-
group fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an
expansion in the internal dimension d of the interface. Near and above d=4 this yields the mean-field distri-
bution P(S) ~ S~¥2¢~545m where S, is a large-scale cutoff, in some cases calculable. Resumming all one-loop
contributions, we find P(S)~ S~ "exp(C(S/ Sm)lfz—g(S/ S.)9), where B, C, &, and 7 are obtained to first order
in e=4—d. Our result is consistent to O(e) with the relation 7= T§:=2—ﬁ§, where  is the static roughness
exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes,
including random-bond, random-field, and random-periodic disorders. Extended to long-range elastic systems,
it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with
T:Z—jg to O(e=2-d). We discuss consequences for avalanches at depinning and for sandpile models,
relations to Burgers turbulence and the possibility that the relation 7=7; be violated to higher loop order.
Finally, we show that the avalanche-size distribution on a hyperplane of codimension one is in mean field

(valid close to and above d=4) given by P(S)~K;;3(S)/S, where K is the Bessel-K function, thus
4

Thyper plane= 3+

DOI: 10.1103/PhysRevE.79.051106 PACS number(s): 05.40.—a, 05.10.Cc



Exponent values in avalanche size distributions P(s) ~s™7
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Avalanches in branching processes } dissipation
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Figure 26: Branching process with
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Preben Alstrgm. Mean-field exponents for self-organized critical
phenomena. Phys. Rev. A, 38:4905-4906, 1988.



Exponent values in avalanche size distributions P(s) ~s™7
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Avalanche size

Which is the "right" variable to measure ?



Which is the "right" variable to measure ? 0. Ramos, HDR (2015)

4 N

o7 thch is the "right” wvariable to mea- AR 8 resul.t* we have two power laws,
with two different exponents, describing
onsider a power law

the same process. In the case of critical
where N is a normal- phenomena, the standard manner to de-
JThe variable s can be  fine the size of an event is by measuring
the most common its volume [Stauffer and Aharony, 2003]

case is E ~ A=, ere E and A are the (in a n-dimensional space). Therefore,

energy and the amplitude respectively). in order to analyze the critical proper-
ties of a given process, the variable to

P(s)ds = P(s;)ds; (21) choose is the one proportional to the
volume. In the case of earthquakes,

1 _wp Dy—1 we introduced the energy and the am-
NSI ADas; " dsp = P(s)ds;  (22) plitude: P(E) ~ E_E‘Bg};(A) ~ A7
Da B and it is the energy the one propor-

Pisp) = N 5 (23)  tional to the area of the two-dimensional

event. Notice that the relation between
the two is given by E ~ AP4 with
Dy=(2-1)/(5/3—1) =3/2 (instead
of the common E ~ A?).

with B=(b—1)Da+1 (24)




Which is the "right" variable to measure: the volume of the avalanche
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Avalanche size distributions

Getting familiar with exponent values
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Exponent values

What to compare with ?
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REVIEWS OF MODERN PHYSICS, VOLUME 90, OCTOBER—DECEMBE

In seismology, these models have been fairly successful in
reproducing the Gutenberg and Richter (1944) statistics of
earthquakes. This empirical law states that the frequency of
earthquakes of (energy) magnitude

M, = 3log(E) — 2.9, (11)

where E is the energy release, in a given region obeys the
power-law relation log P(m > mg) ~ —bmy + const, where
b ~ (.88, or equivalently

p(E)~E™, with 7=1+3%b~15.

For accuracy, we ought to say that there exist several earth-
quake magnitude scales besides that of Eq. (11). They roughly
coincide at not too large values; in fact, M, is not the initial
Richter scale. More importantly, the value of the exponent
b € [0.8, 1.5] depends on the considered earthquake catalog
and notably on the considered region. For sandpilelike
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Earthquakes as a Self-Organized Critical Phenomenon

PER BAak AND CHAO TANG

Brookhaven National Laboratory, Upton, New York

The Gutenberg-Richter power law distribution for energy released at earthquakes can be understood
as a consequence of the earth crust being in a self-organized critical state. A simple cellular automaton
stick-slip type model yields D(E) = E~" with 7 = 1.0 and 7 = 1.35 in two and three dimensions,
respectively. The size of earthquakes is unpredictable since the evolution of an earthquake depends

crucially on minor details of the crust.

INTRODUCTION

The distribution of energy released during earthquakes has
been found to obey the famous Gutenberg-Richter law
[Gutenberg and Richter, 1956]. The law is based on the
empirical observation that the number N of earthquakes of
size greater than m is given by the relation

lOng N=a-bm (1)

The precise values of @ and b depend on the location, but
generally b is in the interval 0.8 < b < 1.5. The energy
released during the earthquake is believed to increase expo-
nentially with the size of the earthquake,

logywE=c—dm (3]

so the Gutenberg-Richter law is essentially a power law
connecting the frequency distribution function with the
energy release E (or other physical quantities such as the
‘‘seismic moment'")

dNI/dE « m ™1 7 b8 = ;=7 3)

with 1.25 < 7 < 1.5.
Despite the universality of the Gutenberg-Richter relation,

model must necessarily be grossly simplified. The immediate
goal is not to produce an accurate model but to point out a
general mechanism leading to the power law distribution of
earthquakes. In the following section an effort will be made
to connect the concept of self-organized criticality to earth-
quakes.

SELF-ORGANIZED CRITICALITY
AND MoDEL CALCULATIONS

It is generally assumed that the dynamics of earthquakes is
due to a stick-slip mechanism involving sliding of the crust of
the earth along faults [Stuart and Mavko, 1979; Sieh, 1978;
Choi and Huberman, 1984]. When slip occurs at some
location, the strain energy at that position is released, and
the stress propagates to the near environment. While this
picture is rather well established, no connection between
stick-slip models and the actual spatial and temporal corre-
lations has been demonstrated. It has been suggested that
the stick-slip picture can be modeled as a branching process
[Kagan and Knopoff, 1987]. The observed power law behav-
ior is then rather remarkable since one would naively expect
some exponential distribution, e.g., D(E) =~ e 'E’E", where Eg
is roughly the energy released at a single slip.



Size distributions of earthquakes U.S. Geological Survey (USGS)

http://earthquake.usgs.gov/earthquakes/search/
1990-01-01 00:00:00 to 2019-12-31 23:59:59

3/2 (Magnitude + 6.07) = Log (Seismic Moment) (30 years period)
=3/2(6-1)
Magnltude +—> Energy
| 0\ | | | | +I Worldw|de bl= 1.01 -K i o ' T
10fE N o Japan bo10 ol N —=— Worldwide 3=1.673 |
5 ¢ California  b=0.96 ] 1071 ~ @ Japan $=1.666
g soxs ] ~— 4 California (3=1.640
[0}
% 2 -15
S 10°¢ E 107 F -
£ 5
3 o ' ]
5 0| P(E)~EP N |
2 10 3 - . -
£
Z
-25 | 4
N 10
10-2 I 1 I L 1 1 1 1 1 | 1 L 1 | !

1 2 3 4 5 6 7 8 9 10

, 10 10™ 10" 10" 102 102 10*
Magnitude

Seismic Moment (Nm)



We can do rely on recent earthquake data !

Get updated.

%H§99w§ SCEDC Hi'net B Ver.

U.S Geologica' Survey (USGS) Southern California Earthquake Data Center High Sensitivity Seismograph Network Japan




Our experiment
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Quantitative analogies with earthquake statistics
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Quantitative analogies with earthquake statistics
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Quantitative analogies with earthquake statistics
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Quantitative analogies with earthquake statistics
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Quantitative analogies with earthquake statistics
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Qualitative analogies with earthquake statistics
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Why is this analog experience (to earthquakes) relevant?

[- Quantitative similarities strongly suggest a common physics ]

We are currently trying to understand its dynamics:

4 )

- Parameter dependences (robustness) & origin of the dynamics

- Memory effets

- Possibilities of predicting large events

- Separating common ("universal") features of the dynamics vs.
specific ones to earthquakes or to our granular fault.

- A relevant difference: R = 17.35 quakes/s

A 48h experiment brings a similar number of events as 150 years of seismicity with
magnitude 22 in California (very suitable for Artificial Intelligence analysis).
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Predictability

Scale-invariance ? Inherently impossible?
Origin? = Memory effects
Robustness? Prediction of catastrophic events?
Common features:

Clustering, memory?

Critical properties

Universality classes?
Experiments: Not-robust exponent values & exponent values larger than 3/2
Diverging correlation lengths?
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focusing on predictability:
Machine Learning analysis of LabQuakes time series
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focusing on predictability:
Machine Learning analysis of LabQuakes time series
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Take-away messages

- Different exponent values can reflect a very different physics

- We can rely on recent earthquake data, and it is an excellent tool to test
and better understand our methods and actual data. Get updated !

- We are working on generating reliable and high quality data with controlled
experiments, and so far the results look quite promising.
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Adding dissipation to avalanche models
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Figure 26: Branching process with
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Preben Alstrgm. Mean-field exponents for self-organized critical
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OFC model: changing the exponent value with dissipation
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Subcritical Statistics in Rupture of Fibrous Materials: Experiments and Model

Stéphane Santucci, Loic Vanel, and Sergio Ciliberto

Laboratoire de physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon,
46 allée d’'Italie, 69364 Lyon Cedex 07, France
(Received 20 May 2004; published 26 August 2004)

We study experimentally the slow growth of a single crack in a fibrous material and observe stepwise
growth dynamics. We model the material as a lattice where the crack is pinned by elastic traps and grows
due to thermally activated stress fluctuations. In agreement with experimental data we find that the
distribution of step sizes follows subcritical point statistics with a power law (exponent 3/2) and a
stress-dependent exponential cutoff diverging at the critical rupture threshold.

O K=0.50 Kc

0 K=0.58 K.

O K=065K,

DOI: 10.1103/PhysRevLett.93.095505 PACS numbers: 62.20.Mk, 46.50.+a, 81.40.Np

* K=0.73K,
+ K=0.80K,

x K=0.89 KC
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FIG. 2. Probability distribution of step sizes for various val-
ues of stress intensity factor. Choosing A = 50 wm, the differ-
ent curves are the best fits of Eq. (3) giving an average value
V=5=x1A%



PRL 96, 045501 (2006)

PHYSICAL REVIEW LETTERS

week ending
3 FEBRUARY 2006

Local Waiting Time Fluctuations along a Randomly Pinned Crack Front

Knut Jgrgen Mé’il;zsy,1 Stéphane Santucci,' Jean Schmittbuhl.” and Renaud Toussaint”
lesisk Institutt, Universitefet i Oslo, P.O. Boks 1048 Blindern, N-0316 Oslo 3, Norway

2Institut de Physique du Globe de Strasbourg, UMR 7516, 5 rue René Descartes, F-67084 Strasbourg Cedex, France

(Received 26 August 2005; published 30 January 2006)

The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas N

block is followed using a high resolution fast camera. We show that the fracture front dynamics is 10 F T
governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize . : é’%% % °‘3?,5ﬁﬁj31131:m’5
the intermittent dynamics observed, i.e., the local pinnings and depinnings of the crack front by measuring 0 3 g‘@l :
the local waiting time fluctuations along the crack front during its propagation. The deduced local front 107
line velocity distribution exhibits a power law behavior, P(v) = v~ 7 with = 2.55 = (.15, for velocities Ps
v larger than the average front speed (v). The burst size distribution is also a power law, P(S) = S~ with 107 " K
vy = 17 %= 0.1. Above a characteristic length scale of disorder L, ~ 15 um, the avalanche clusters 1070 P |y
become anisotropic providing an estimate of the roughness exponent of the crack front line, H = (.66. 10—2%

107 :
DOI: 10.1103/PhysRevLett.96.045501 PACS numbers: 62.20.Mk, 05.45.Df, 61.43.—j, 81.40.Np o o lf;

b
107°

FIG. 3 (color). Burst size S distribution P(S/(S)), normalized

by the average burst size (S), for different experimental con-
ditions (the various symbols correspond to those on Fig. 2). The
bursts detected for each experiment correspond to clusters of
velocities 3 times larger than the average crack front speed. A fit
on all the data (dashed line) gives a slope equal to 1.71. Inset:
Normalized bursts size distribution P(S/(S)) averaged over all
the different experimental conditions, for a wide range of differ-
ent threshold levels C. A fit to all the data, cutting the largest
clusters at which a cutoff appears due to the lack of statistics
(solid line), gives a slope equal to 1.67.
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Micro-slips in an experimental granular shear band
replicate the spatiotemporal characteristics of
natural earthquakes

David Houdoux!, Axelle Amon!, David Marsan?, Jérdme Weiss3 & Jérdme Crassous
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Fig. 3 Scaling law of events. a Probability density dN/dM of
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JGR Solid Earth

Micro-Seismic Monitoring of a Shear Fault Within a

Floating Ice Plate

Cédric Lachaud'?'"', David Marsan! C , Maurine Montagnat?'"', Jérome Weiss?

Ludovic Moreau®' "', and Florent Gimbert?

1Université Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, ISTerre, Chambéry, France, 2Université Grenoble Alpes, CNRS,
IRD, G-INP, IGE, Grenoble, France, 3Université Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France

Abstract The deformation of a circular fault in a thin floating ice plate imposed by a slow rotational
displacement is investigated. Temporal changes in shear strength, as a proxy for the resistance of the fault
as awhole, are monitored by the torque required to impose a constant displacement rate. Micro-seismic
monitoring is used to study the relationship between fault average resistance (torque) and micro-ruptures.
The size distribution of ruptures follows a power-law scaling characterized by an unusually high exponent
(b ~ 3), characteristic of a deformation driven by small ruptures. In strong contrast to the typical brittle
dynamics of crustal faults, an 'apparently aseismic’ deformation regime is observed in which small
undetected seismic ruptures, below the detection level of the monitoring system, control the slip budget.
Most (~ 71%) of the detected ruptures are organized in bursts with highly similar waveforms, suggesting
that these ruptures are only a passive by-product of apparently aseismic slip events. The seismic signature
of this deformation regime has strong similarities with crustal faulting in settings characterized by high

temperature and with non-volcanic tremors.
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The Gutenberg-Richter law and self-similarity. We now turn to
the global statistical characterization of the AE time series. In all

e~ the experiments, the probability density function, P(E), decays as
a power-law over nearly five decades up to an upper corner
energy (Fig. 2a). It is well-fitted by:

P(E) < EPexp(—E/E,), (1)

ARTICLE with E> E,;,. The lower cutoff, E,,;, = 107 is the same in all
DOK: 10.1038/541467-018-03559-4) OPEN our experiments. It is set by the sensitivity of the acquisition
. . . system. Conversely, the exponent 3 and the upper corner energy

Aft rShOCk sequences and SEISmIC-hke E, depend on both crack speed (slightly) and material micro-
Organization Of acoustic events produced by a structure (more importantly). We will return at the end of this
. ' section to the analysis of these dependencies. Equation 1 is
Slngle propagatlng CraCk reminiscent of the Gutenberg-Richter law. Note, however, that

the energy distributions observed in seismology often take the
form of a pure power-law. Then, earthquake sizes are more
commonly quantified by their magnitude, which is linearly rela-
ted to the logarithm of the energy”®: log,E = 1.5M + 11.8. The
energy distribution takes the classical Gutenberg-Richter

Jonathan Barés?, Alizée Dubois!, Lamine Hattali"3, Davy Dalmas? & Daniel Bonamy® '

10° frequency-magnitude relation: log, (N(M) = a — bM, where N(M)
is the number of earthquakes per year with magnitude larger than
10%¢ M and a and b are constants. The b-value relates to the exponent
o'l S involved in Eq. 1 via: f = b/1.5 + 1.
_10°L ]DOI: TO.1038/541467-018-03559-4] www.nature.com/naturecommunications
m
ERTl
102 Fig. 2 The Gutenberg-Richter law and time—energy self-similarity. a
10 Distribution of AE energy in one of the experiments (microstructure length-
+ Current AR scale: d = 583 um, crack speed: "v 14 2:7 uyms1). Solid magenta line is a
" PastA® 10 gamma function P(E) « E-Bexp(—E/EO) for E = Emin = 10-4 (vertical magenta

™ 10° 102 107 10° 10" 10 10° §ashed line), with fitted parameters B = 0.96 + 0.02 and EO = 38 + 9.
E (a.u.)

107°



PHYSICAL REVIEW E 99, 052902 (2019)

Seismicity in sheared granular matter

Aghil Abed Zadeh,':" Jonathan Barés,” Joshua E. S. Socolar,' and Robert P. Behringer'-
'Department of Physics & Center for Non-linear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
2Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France

")i (Received 13 November 2018; revised manuscript received 11 April 2019; published 20 May 2019)

We report on experiments investigating the dynamics of a slider that is pulled by a spring across a granular
medium consisting of a vertical layer of photoelastic disks. The motion proceeds through a sequence of discrete
events, analogous to seismic shocks, in which elastic energy stored in the spring is rapidly released. We measure
the statistics of several properties of the individual events: the energy loss in the spring, the duration of the
movement, and the temporal profile of the slider motion. We also study certain conditional probabilities and
the statistics of mainshock-aftershock sequences. At low driving rates, we observe crackling with Omori-Utsu,
Bith, and waiting time laws similar to those observed in seismic dynamics. At higher driving rates, where the
sequence of events shows strong periodicity, we observe scaling laws and asymmetrical event shapes that are

clearly distinguishable from those in the crackling regime.

DOI: 10.1103/PhysRevE.99.052902
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III. CRACKLING DYNAMICS

When the slider is pulled very slowly, we observe crackling
dynamics, as evidenced for ¢ = 0.1 mm/s by the two decades
of power-law decay in P(S) shown in Fig. 1(d). The PDF is
well fit by the Gutenberg-Richter form

P(S) ~ SPe 5um | (1)

with ',6 =1222000] and Spax = (6.1£0.7) x 107* 1.
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"The ability to reduce everything to
simple fundamental laws does not
imply the ability to start from those
laws and reconstruct the universe."
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Mean-field theory of hard sphere glasses and jamming

Giorgio Parisi*

Dipartimento di Fisica, INFM-CNR SMC, INFN, Universita di Roma “La Sapienza,”
Piazzale Aldo Moro 2, 00185 Roma, Italy

Francesco Zamponi®

Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 Rue Lhomond, 75231
Paris Cedex 05, France

(Published 16 March 2010)

It is worth noting that in experiments on granular sys-
tems and powders the role of friction is important (Dau-
chot et al., 2005; Schroter et al., 2005; Abate and Durian,
2006; Daniels and Behringer, 2006; Pica Ciamarra et al.,
2007; Shundyak et al., 2007; Somfai et al., 2007; Lech-
enault et al., 2008), for instance, in determining the exis-
tence of loose packings (Onoda and Liniger, 1990; Jer-
kins et al., 2008; Song et al., 2008). Friction complicates a
lot of the theoretical analyses of the packing problem
since the system is intrinsically out of equilibrium and
standard equilibrium statistical mechanics is, in prin-
ciple, useless. Nevertheless, since the pioneering work of
Edwards (Edwards and Oakeshott, 1989; Edwards,
1998), statistical mechanics ideas have been used to de-
scribe frictional systems, leading to remarkable results
(Goldbart et al., 2005). Comparison with experimental
results is made difficult by the fact that in most experi-
ments samples are polydisperse, often with a large range
of particle sizes as in the case of many granulars.

For reasons of space, this paper 1s focused on our ap-
proach, that we will discuss in full detail; therefore, in
the following we will consider mainly the statistical
properties of a system of frictionless spheres, since our
method is based on equilibrium statistical mechanics.
We will not discuss in detail neither the geometrical
properties (unless needed to compare numerical data
with our results) of amorphous packings nor how their
properties are influenced by the presence of friction.



Physics of disordered systems Physics of actual granular
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Models of Avalanches

o
* cellular automata moving plate 7 |
) BB -
>~ -1 - f(xy)
fixed plate | Th x.y)
* Mesoscopic approaches (elastoplastic models) ﬁ -

* Elastic line is a disordered landscape (renormalization groups)




Exponent values in avalanche size distributions
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Exponent values in avalanche size distributions P(s) ~ s 7
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