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Tools to study interfaces
Disordered elastic systems framework

Brutal, but effective simplification
Smooth, univalued
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The framework allows us to perform very precise analytical calculations

Tools to study interfaces
Disordered elastic systems framework
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Tools to study interfaces
Domains obtained with a Ginzburg-Landau approach



The most probable configuration is the one which minimizes the energy:



Disordered Ginzburg-Landau model



We use an ansatz



1) By using our ansatz, the Langevin equation becomes

2) We “localize” the equation around the position of the interface by multiplying by



1) By using our ansatz, the Langevin equation becomes

2) We “localize” the equation around the position of the interface by multiplying by

3) We integrate x over the whole space







Evolution from an initially flat configuration with equivalent parameters

Ginzburg-Landau

One solves for

With parameters

Edwards-Wilkinson

One solves for

With parameters



Clean systems: Roughness at different evolution times

Evolution from an initially flat configuration



Clean systems: Roughness at different temperatures

Evolution from an initially flat configuration



Disordered systems
Roughness at different evolution times



Interfaces’ fluctuating shape reveal the systems’ microscopic physics

Roughness

Microscopic interplay of temperature and disorder in an interface
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Thermal fluctuations
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Microscopic interplay of temperature and disorder in an interface

Rescaling arguments:

would yield a temperature-independent 

We have shown a numerical confirmation of this regime

interplay

NC, Thierry Giamarchi, Vivien Lecomte, and Elisabeth Agoritsas. Microscopic interplay of temperature and disorder of a 1D elastic interface. PRE (2022)
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Versatility of a Ginzburg-Landau approach



Allows us to emulate typical experimental PMOKE protocols to obtain velocity

NC, E. E. Ferrero, A. B. Kolton, J. Curiale, V. Jeudy, S. Bustingorry, Magnetic domain wall creep and depinning: A scalar field model approach. PRE (2018)

Versatility of a Ginzburg-Landau approach



Observation of the creep regime

NC, E. E. Ferrero, A. B. Kolton, J. Curiale, V. Jeudy, S. Bustingorry, Magnetic domain wall creep and depinning: A scalar field model approach. PRE (2018)

Versatility of a Ginzburg-Landau approach



Recent experiments revealed complex interface behaviours

P. Domenichini, et al. Transient magnetic-domain-wall ac dynamics by means of magneto-optic Kerr effect microscopy. Highlighted in PRB, 2019.

Typical PMOKE
protocol to estimate
domain wall velocities

Applications

DC protocol



P. Domenichini, et al. Transient magnetic-domain-wall ac dynamics by means of magneto-optic Kerr effect microscopy. Highlighted in PRB, 2019.

Typical PMOKE
protocol to estimate
domain wall velocities

Applications
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After field pulses of same intensity but opposite polarity a domain was expected to remain unchanged

AC protocol

Recent experiments revealed complex interface behaviours



Domains lose area

-Why the roughness is increased
-Why domains lose area

Applications
Recent experiments revealed complex interface behaviours

DC protocol AC protocol



Experimental protocol emulation
Ginzburg-Landau simulations

NC. Degradation of domains with sequential field application. JSTAT 2021





The effective field is the external field modified by the force due to the domain curvature



●Ginzburg-Landau type models allow us to emulate typical experimental 
protocols to study velocity-field responses

●We show how a Ginzburg-Landau model can be reduced to an elastic line 
description

●We are now developing new observables to characterise interfaces

Conclusions and perspectives

Other applications: NC, Kruse, Giamarchi. Phase separation in surfaces due to matter exchange. Arxiv: 2205.03306
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sLLG

Stochastic field

Effective field Zeeman + Exchange + Perpendicular magnetic anisotropy (z-direction)

Stochastic Landau-Lifshitz-Gilbert equation



sLLG

Ginzburg-Landau
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Precessional regime
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Flow regime: Ginzburg-Landau simulations and Pt/Co/Pt experiments
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Ginzburg-Landau approach

NC, E. E. Ferrero, A. B. Kolton, J. Curiale, V. Jeudy, S. Bustingorry, Magnetic domain wall creep and depinning: A scalar field model approach. PRE (2018)





With our method we find

Which is the same relation that one finds by computing the energy cost of creating a domain wall in the GL system.



We use an ansatz
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Image acquisition

Typical PMOKE
protocol to estimate
domain wall velocities



temperature

disorder

With AC cycles the disorder correlation is increased

interplay

depends on the disorder correlation



The area is lost due to local curvatures that induce a force:
the effective field felt by the interface is



But that is not all...

Area “loss” Area “gain”





When domains are subjected to AC dynamics:
the disorder correlation length is changed (compared to the DC case)

This explains:

- the change in the observed exponent

- the non linear part of the area loss


