Scaling of average avalanche shapes for acoustic emission during jerky twin boundary motion in single-crystalline Ni₂MnGa

<u>Dr. László Z. Tóth¹</u>, Emil Bronstein², Dr. Lajos Daróczi¹, Prof. Doron Shilo² and Prof. Dezső L. Beke¹

¹: Department of Solid State Physics, University of Debrecen, Hungary

²: Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Experimental details

UNIVERSITY of

DEBRECEN

Overview

- 10M modulated Ni_{50.0}Mn_{28.5}Ga_{21.5} single crystal Dimensions 20 mm × 3 mm × 2.5 mm
- Room temperature: fully martensitic state
- Slow compression: 2 μm/sec rate, using thermal expansion of an alumina rod
- Extrenal magnetic field: 0.08 T

Noise data acquisition:

- Magnetic coil (ME) + Piezoelectric sensor (AE)
- National instruments PCI6111 DAQ board
- 4 MSample/sec

Stress data acquisition:

- Kistler 9215A (force sensor) + 5015 (amplifier)
- National instruments PCI6071E DAQ board
- 10 kSample/sec

Experimental details

[1]: E. Bronstein, L. Z. Tóth, L. Daróczi, D. L. Beke, R. Talmon, & D. Shilo: Tracking Twin Boundary Jerky Motion at Nanometer and Microsecond Scales. *Advanced Functional Materials*, **31(50)**, 2106573 (2021)

UNIVERSITY of

DEBRECEN

- Investigation of single twin boundary motion, induced by slow compression; the magnetizations of the two neighboring twins ensure no magnetic domains at the twin boundary
- Simultaneous measurement of stress, acoustic emission (AE) and magnetic emission (ME) to study the connection between them.
- There is a definite agreement between the transformed volumes calculated from the force and the ME measurements → Ref. [1]
- This presentation focuses on the acoustic emission results and on the average avalanche profiles and on the scaling relations

Processing the AE signals

[2]: E. Pomponi, & A. Vinogradov, *Mechanical Systems and Signal Processing*, **40(2)**, 791-804. (2013)

- Identification of AE avalanches
- Calculation of AE avalanche parameters
- Clustering [2] to eliminate false AE avalanches and background noise → "Cluster 3"
- Statistical analysis

Acoustic emission results

• Crackling noise (avalanches) with power-law distribution characteristics:

$$P(x) \sim x^{-\eta} \exp\left(-\frac{x}{x_c}\right)$$

 X can be the peak amplitude, A_m, size, S, or energy, E; η is the characteristic exponent, and X_c is the cut-off value

Exponent	Magnetic emission [1]	Acoustic emission
Amplitude, α	1.6	1.99
Energy, ε	1.26	1.47
Size, σ	0.8	1.79

Avalanche 2022

Average shape of avalanches

- Power-law scaling relations between the above parameters (and between the exponents) were obtained:
- $E \propto A_m^x$, $S \propto A_m^{\chi}$, or $A_m \propto T^{\xi}$;
- In MFT: x = 3, $\chi = 2$ and $\xi = 1$.
- The focus is increasingly on the **temporal shapes of avalanches**, i.e. the average of the detected voltage signal (U(t)) for a given size (or duration) range of avalanches.
- Average avalanche shapes can be used when the measured voltage is proportional to the corresponding interface velocity v(t), characteristic for the crackling noise emission.

Average avalanche shape for fixed size

The theoretically predicted temporal shape of the avalanche is given by [3]:

$$U(t) = atexp^{-bt^2},$$

where $b = 1/\tau^2$, and τ is the characteristic time decay of the avalanche.

The above equation has maxima at:

$$t_m = \frac{\tau}{\sqrt{2}} = \frac{1}{\sqrt{2b}}$$

$$A_m = at_m e^{-1/2} = Bt_m$$
[3]: Casals, B., et al. Sci. Rep. 11, 5590 (2021).

- The average avalanche shape has selfsimilar behaviour, with an appropriate normalization, they should be scaled together, according to a universal scaling function.
- The normalization should be performed with A_m and t_m (not distorted by the transfer function of the system [3]).
- In the experiments, t_m has high uncertainty
- Thus, if **B** is constant, we can use $t_m \propto A_m$
- Both axis can be normalized by A_m

Avalanche 2022

The normalization by A_m was not working, the scaling was not perfect Which implies that **B** is not constant, and thus, a (and b or τ) are not universal constants, rather **B** has a definite dependence on $A_m[4]$:

$$B \propto a \propto A_m^{\varphi}$$

Thus, using $A_m = Bt_m$, we can write:

$$t_m \propto \frac{A_m}{B} \propto A_m^{1-\varphi}$$

Scaling the experimentaly determined avalanche shapes with A_m (voltage axis) and $A_m^{1-\varphi}$ (time axis) should produce better scaling:

$$U^*(t^*) \propto e^{1/2} t^* \exp \left(\frac{t^*}{\tau^*}\right)^2$$
where $U^* = \frac{U}{A_m}$, $t^* = \frac{t}{t_m} = \frac{t}{A_m^{1-\varphi}}$, as well as $\tau^* = \frac{\tau}{A_m^{1-\varphi}}$

[4]: S. M. Kamel et al. Materials, 2022,15, 4556

 T^* goes to an asymptotic limit as C (threshold) goes to zero [4].

[4]: S. M. Kamel et al. Materials, 2022,15, 4556

$$\left(U^*=\frac{U}{A_m},\quad t^*=\frac{t}{t_m},\quad T^*=\frac{T}{t_m}\right)$$

$$S \propto A_m^{2-\varphi}$$
$$2-\varphi = 1.21$$
$$\varphi_s = 0.79$$

From power exponents of size (σ =1.79) and amplitude (α =1.99):

$$\frac{\alpha-1}{\sigma-1} = 2 - \varphi = 1.24$$

Average avalanche shapes for various fixed avalanche sizes, Normalized by A_m and $A_m^{1-\phi}$, ϕ =0.85

$$\varphi = \frac{\varphi_S + \varphi_E}{2} = 0.85$$

- Impressive scaling of the avalanches belonging to different size ranges.
- The effect of the threshold is visible near the end of the curves (especially for the smallest size range).

Magnetic emission

$$\frac{\partial \ln S}{\partial \ln U_m} \approx 2 - \varphi \approx 1.63 \qquad \varphi_S \approx 0.37$$

$$\frac{\partial lnE}{\partial lnU_m} \sim 3 - \varphi \qquad \qquad \varphi_E \approx 0.49$$

- The scaling of the magnetic avalanches is poor
- Experimental reasons: Eddy currents, ...

Average avalanche shape for fixed duration [5]:

$$\langle U(t|T)\rangle \propto T^{\gamma-1} \left[\frac{t}{T} \left(1-\frac{t}{T}\right)\right]^{\gamma} \left[1-a\left(\frac{t}{T}-\frac{1}{2}\right)\right]$$

$$S \propto T^{\gamma} \longrightarrow \gamma = 1.6$$

Very good scaling of the average shape for various fixed duration ranges Visible skewness: Eddy currents

[5]: Laurson, et al. "Evolution of the average avalanche shape with the universality class." *Nature communications* 4.1 (2013): 1-6.

This work was supported by the Hungarian National Research, Development and Innovation Office in the framework of the **OTKA PD131784** and **GINOP-2.3.2-15-2016-00041** projects, co-financed by the European Regional Development Fund, related to the Europe 2020 Strategy.

European Union European Regional Development Fund Investing in your future

