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deformation, i.e. heat, at the crack front. The size of the
zone affected is the process zone. It ranges from ⇠ =
50±9µm for ceramics, over ⇠ = 170±12µm for aluminum
to ⇠ = 450 ± 35µm for mortar [361].

Fracture in thin sheets. In thin sheets, very different
roughness exponents have been reported: ⇣ = 0.48 ± 0.05
for polysterene, and ⇣ = 0.67 ± 0.05 for paper [365].
We may speculate that the larger one is related to directed
percolation (section 5.8).

Random fuse models. Random fuse models, a.k.a. damage
percolation, have been proposed [366] as a model for
fracture: Consider a regular lattice, where on each bond is
placed a fuse of unit resistance, and a random maximum
carrying capacity ic (maximal current), in most studies
drawn from a uniform distribution, ic 2 [0, 1]. The
system may be 2 or 3-dimensional, with a voltage applied
in one direction. To avoid finite-size effects due to
the electrodes, it is advantages to use periodic boundary
conditions [367], with an additional voltage gain V in one
dimension. The voltage is then ramped up from 0, until one
of the fuses exceeds its carrying capacity, at which point
it is considered broken, i.e. having an infinite resistance.
One then recalculates the current distribution and checks
whether another fuse breaks. If not, one increases the
applied voltage.

This is an interesting model for fracture: (i) by solving
the Laplace equation to find the current distribution, it
incorporates the elasticity of the bulk of the material,
providing an effective long-range elasticity; (ii) when a part
of the material is broken, it is removed. It incorporates
ingredients found in Laplacian walks (section 8.9) and DLA
(solving in both cases the Laplace equation to determine the
most likely point of action), and cellular automata as TL92
(section 5.7).

A roughness exponent of the fracture surface in d =
2 + 1 was reported to be ⇣ = 0.62 ± 0.05 [367], apparently
not too different from some experiments [367]. Other
authors focused on the distribution of strength, or broken
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Figure 34. Peeling of a RNA-DNA double strand. The RNA sequence is
from subunit 23S of the ribosome in E. Coli, prolonged to attach the beads
(brown circles, with a much larger radius than drawn here). The DNA
sequence is its complement. The beads sit in an optical trap (blue), at a
distance w. (Drawing not to scale.) Fig. reprinted from [364].
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Figure 35. Left: A sample force-extension curve. For the data-analysis
only the last plateau part of the curve is used (in red). The effective
stiffness m2 in Eq. (302) is estimated from the slope of the green dashed
lines as m2 = 55 ± 5pN/µm at the beginning of the plateau, which
remains at least approximately correct at the end of the plateau. The
driving velocity is about 7nm/s. Fig. reprinted from [364].

fuses upon failure [368, 369, 370]. A variant is the fiber-
bundle model [371, 372].

3.17. Experiments for peeling and unzipping

There are two ways to open a double helix made out of
two complementary RNA or DNA strands, or one RNA
and its complementary DNA strand: peeling and unzipping.
In both cases beads are fixed to the molecules, and then
pulled in an optical or magnetic trap. In the literature, the
word peeling is used for the setup of Fig. 34, where forces
act along the helical axis from opposite extremities of a
duplex, and one of the two strands peels off. Unzipping
denotes an alternative setup where the right bead of Fig. 34
is attached to the free end of the upper strand. As the reader
can easily verify with a twisted thread, unzipping is much
easier to accomplish than peeling. Let us start with peeling
[364], for which a typical force-extension curve is shown in
Fig. 35. The stationary regime is the plateau part (in red).
Averaging over about 400 samples, the effective disorder
�(w) defined in Eq. (111) is measured. The resulting
curve, including error bars for the shape [364], is shown
in grey in Fig. 36, where it is compared to three theoretical
curves: an exponentially decaying function (red, dotted, top
curve), the DPM solution (366) for the Gumbel class (blue,
dashed, middle curve), and the 1-loop FRG solution given
by Eqs. (84) and (88), all rescaled to have the same value
and slope at u = 0. The experiment clearly favors the DPM
solution, best seen in the inset of Fig. 35. While this is
expected, it is a nice confirmation of the theory in a delicate
experiment.

One should be able to extract �(w) also from the
unzipping of a hairpin. Interestingly, experiments report

Peeling of an RNA/DNA double helix

optical traps 
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deformation, i.e. heat, at the crack front. The size of the
zone affected is the process zone. It ranges from ⇠ =
50±9µm for ceramics, over ⇠ = 170±12µm for aluminum
to ⇠ = 450 ± 35µm for mortar [361].

Fracture in thin sheets. In thin sheets, very different
roughness exponents have been reported: ⇣ = 0.48 ± 0.05
for polysterene, and ⇣ = 0.67 ± 0.05 for paper [365].
We may speculate that the larger one is related to directed
percolation (section 5.8).

Random fuse models. Random fuse models, a.k.a. damage
percolation, have been proposed [366] as a model for
fracture: Consider a regular lattice, where on each bond is
placed a fuse of unit resistance, and a random maximum
carrying capacity ic (maximal current), in most studies
drawn from a uniform distribution, ic 2 [0, 1]. The
system may be 2 or 3-dimensional, with a voltage applied
in one direction. To avoid finite-size effects due to
the electrodes, it is advantages to use periodic boundary
conditions [367], with an additional voltage gain V in one
dimension. The voltage is then ramped up from 0, until one
of the fuses exceeds its carrying capacity, at which point
it is considered broken, i.e. having an infinite resistance.
One then recalculates the current distribution and checks
whether another fuse breaks. If not, one increases the
applied voltage.

This is an interesting model for fracture: (i) by solving
the Laplace equation to find the current distribution, it
incorporates the elasticity of the bulk of the material,
providing an effective long-range elasticity; (ii) when a part
of the material is broken, it is removed. It incorporates
ingredients found in Laplacian walks (section 8.9) and DLA
(solving in both cases the Laplace equation to determine the
most likely point of action), and cellular automata as TL92
(section 5.7).

A roughness exponent of the fracture surface in d =
2 + 1 was reported to be ⇣ = 0.62 ± 0.05 [367], apparently
not too different from some experiments [367]. Other
authors focused on the distribution of strength, or broken
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Figure 34. Peeling of a RNA-DNA double strand. The RNA sequence is
from subunit 23S of the ribosome in E. Coli, prolonged to attach the beads
(brown circles, with a much larger radius than drawn here). The DNA
sequence is its complement. The beads sit in an optical trap (blue), at a
distance w. (Drawing not to scale.) Fig. reprinted from [364].
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Figure 35. Left: A sample force-extension curve. For the data-analysis
only the last plateau part of the curve is used (in red). The effective
stiffness m2 in Eq. (302) is estimated from the slope of the green dashed
lines as m2 = 55 ± 5pN/µm at the beginning of the plateau, which
remains at least approximately correct at the end of the plateau. The
driving velocity is about 7nm/s. Fig. reprinted from [364].

fuses upon failure [368, 369, 370]. A variant is the fiber-
bundle model [371, 372].

3.17. Experiments for peeling and unzipping

There are two ways to open a double helix made out of
two complementary RNA or DNA strands, or one RNA
and its complementary DNA strand: peeling and unzipping.
In both cases beads are fixed to the molecules, and then
pulled in an optical or magnetic trap. In the literature, the
word peeling is used for the setup of Fig. 34, where forces
act along the helical axis from opposite extremities of a
duplex, and one of the two strands peels off. Unzipping
denotes an alternative setup where the right bead of Fig. 34
is attached to the free end of the upper strand. As the reader
can easily verify with a twisted thread, unzipping is much
easier to accomplish than peeling. Let us start with peeling
[364], for which a typical force-extension curve is shown in
Fig. 35. The stationary regime is the plateau part (in red).
Averaging over about 400 samples, the effective disorder
�(w) defined in Eq. (111) is measured. The resulting
curve, including error bars for the shape [364], is shown
in grey in Fig. 36, where it is compared to three theoretical
curves: an exponentially decaying function (red, dotted, top
curve), the DPM solution (366) for the Gumbel class (blue,
dashed, middle curve), and the 1-loop FRG solution given
by Eqs. (84) and (88), all rescaled to have the same value
and slope at u = 0. The experiment clearly favors the DPM
solution, best seen in the inset of Fig. 35. While this is
expected, it is a nice confirmation of the theory in a delicate
experiment.

One should be able to extract �(w) also from the
unzipping of a hairpin. Interestingly, experiments report
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Force-force correlations

Δ(w − w′�) := FwFw′ �
c ≡ FwFw′ � − Fw Fw′�
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Figure 36. Measurements of �(w) (in grey), with 1-� error bars (green
shaded), compared to three theoretical curves: pure exponential decay
(dotted red), 1-loop FRG, Eq. (84) (black dot-dashed), and DPM, Eq.
(366) (blue dashed), all rescaled to have the same value and slope at u = 0.
Inset: theoretical curves with the data subtracted (same color code). The
blue curve is the closest to the data. The correlation length estimated from
�(w) is ⇠ = 0.055 ± 0.005µm ' 186 base pairs. Fig. reprinted from
[364].

that the scaling of Eq. (365) is replaced by [293]

⇢m ⇠ m�4/3, i.e. ⇣ =
4

3
. (436)

This is a clear signature of a different universality class,
namely “random-field” disorder in equilibrium, for which
the roughness exponent (83) to all orders in ✏ reads ⇣ =
✏/3; setting ✏ = 4 leads to Eq. (436). An analytic
solution is given in section 2.23. This scenario is possible
through the much larger effective stiffness m2 there, which
manifests itself in correlation lengths of ⇠ = 1 to 35 base
pairs, as compared to ⇠ = 186 base pairs for peeling.
Equilibrium is observed experimentally [293] through a
vanishing hysteresis curve.

3.18. Creep, depinning and flow regime

In section 1.7, Eqs. (45)-(47), we had argued that in
equilibrium the elastic energy scales as

Eel(`) ⇠ `✓, ✓ = 2⇣eq + d � ↵, (437)

and as long as ✓ > 0 the temperature T is irrelevant at
large scales. On the other hand, if the driving velocity
v = 0, and leaving the system enough time to equilibrate,
it will be in equilibrium. As sketched in Fig. 37, there
are three different fixed points: equilibrium (v = f = 0,
T ! 0), depinning (T = 0, v ! 0 or f ! fc),
and large v or f , for which we expect ⌘v = f . Let us
now consider perturbations of the equilibrium fixed point,
i.e. T small, and f ⌧ fc, commonly referred to as the
creep regime. Scaling arguments first proposed by Ioffe

f0
T=0T>0

f0

f≫ f

f

v

Figure 37. Sketch of velocity force curve at vanishing (T = 0, depinning)
and finite temperature (T > 0, creep). For an experimental test see Fig. 42.

and Vinokur [373], and Nattermann [374], were later put on
more solid ground via FRG [375, 143]. Scaling arguments
compare the elastic energy (437) with the energy gained
through the advance of the interface, i.e. an avalanche of
size S,

Ef (`) = �f

Z

x

�u(x) ⌘ �fS ⇠ �f`d+⇣eq . (438)

As ⇣eq < ↵, the energy Ef (`) dominates over Eel(`)
for large `, and the optimal fluctuation is obtained for
@`[Eel(`) + Ef (`)]

!
= 0, resulting in `

⇣eq�↵

opt
⇠ f, or

`opt ⇠ f�⌫eq , ⌫eq =
1

↵ � ⇣eq

, (439)

Eopt ⇠ f�µeq , µeq = ⌫eq✓ =
2⇣eq + d � ↵

↵ � ⇣eq

. (440)

This identifies the creep law as

v(f, T ) = v0 e�
T⇤
T ( fc

f )µeq

, f ⌧ fc. (441)

We remind that for depinning (see Eqs. (304) and (308))

v ⇠ (f � fc)
� , f � fc, (442)

and that for large f

v ' f

⌘
, f � fc. (443)

There are thus three regimes, sketched in Fig. 37: f ⌧ fc,
the creep regime discussed above, governed by the T = 0
equilibrium fixed point; T = 0, and f ⇡ fc, the depinning
fixed point; and the large-f and large-v regime, where the
disorder resembles a thermal white noise, with amplitude
proportional to 1/v. The latter can be understood from the
relation

�(w) ' �(w) = �(vt) =
1

v
�(t). (444)

More precisely, it looks like a thermal noise with
temperature

T =
1

v

Z
1

0

dw �(w). (445)

Le Doussal + Wiese 2006 
toy model

exponential1-loop FRG

difference experiment - theory

Δ̃ − ln(Δ̃) = 1 +
w2

2

Δ̃(w) =
w2

2
+ Li2(1 − ew) +

π2

6
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Figure 36. Measurements of �(w) (in grey), with 1-� error bars (green
shaded), compared to three theoretical curves: pure exponential decay
(dotted red), 1-loop FRG, Eq. (84) (black dot-dashed), and DPM, Eq.
(366) (blue dashed), all rescaled to have the same value and slope at u = 0.
Inset: theoretical curves with the data subtracted (same color code). The
blue curve is the closest to the data. The correlation length estimated from
�(w) is ⇠ = 0.055 ± 0.005µm ' 186 base pairs. Fig. reprinted from
[364].

that the scaling of Eq. (365) is replaced by [293]

⇢m ⇠ m�4/3, i.e. ⇣ =
4

3
. (436)

This is a clear signature of a different universality class,
namely “random-field” disorder in equilibrium, for which
the roughness exponent (83) to all orders in ✏ reads ⇣ =
✏/3; setting ✏ = 4 leads to Eq. (436). An analytic
solution is given in section 2.23. This scenario is possible
through the much larger effective stiffness m2 there, which
manifests itself in correlation lengths of ⇠ = 1 to 35 base
pairs, as compared to ⇠ = 186 base pairs for peeling.
Equilibrium is observed experimentally [293] through a
vanishing hysteresis curve.

3.18. Creep, depinning and flow regime

In section 1.7, Eqs. (45)-(47), we had argued that in
equilibrium the elastic energy scales as

Eel(`) ⇠ `✓, ✓ = 2⇣eq + d � ↵, (437)

and as long as ✓ > 0 the temperature T is irrelevant at
large scales. On the other hand, if the driving velocity
v = 0, and leaving the system enough time to equilibrate,
it will be in equilibrium. As sketched in Fig. 37, there
are three different fixed points: equilibrium (v = f = 0,
T ! 0), depinning (T = 0, v ! 0 or f ! fc),
and large v or f , for which we expect ⌘v = f . Let us
now consider perturbations of the equilibrium fixed point,
i.e. T small, and f ⌧ fc, commonly referred to as the
creep regime. Scaling arguments first proposed by Ioffe
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Figure 37. Sketch of velocity force curve at vanishing (T = 0, depinning)
and finite temperature (T > 0, creep). For an experimental test see Fig. 42.

and Vinokur [373], and Nattermann [374], were later put on
more solid ground via FRG [375, 143]. Scaling arguments
compare the elastic energy (437) with the energy gained
through the advance of the interface, i.e. an avalanche of
size S,

Ef (`) = �f
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�u(x) ⌘ �fS ⇠ �f`d+⇣eq . (438)

As ⇣eq < ↵, the energy Ef (`) dominates over Eel(`)
for large `, and the optimal fluctuation is obtained for
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= 0, resulting in `
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, f ⌧ fc. (441)

We remind that for depinning (see Eqs. (304) and (308))
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and that for large f
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⌘
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There are thus three regimes, sketched in Fig. 37: f ⌧ fc,
the creep regime discussed above, governed by the T = 0
equilibrium fixed point; T = 0, and f ⇡ fc, the depinning
fixed point; and the large-f and large-v regime, where the
disorder resembles a thermal white noise, with amplitude
proportional to 1/v. The latter can be understood from the
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T > 0 and v > 0: Equilibrium or Depinning ?
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Field theory background

∂tu(x, t) = ∇2u(x, t) + m2[w − u(x, t)] + F(x, u(x, t))

Equation of motion (for SR elasticity for simplicity)

Forces are drawn from a Gaussian, and have correlations

F(x, u)F(x′�, u′�)c = δd(x − x′�)Δ(u − u′�)

Field theory (MSR=classical limit  of Keldysh)ℏ → 0

𝒮[ũ, u] = ∫x,t
ũ(x, t)[∂tu(x, t) − ∇2u(x, t) + m2(u(x, t) − w)]

renormalize

w = vtheight of the interface
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d = 2 (Padé resummation)

Chauve, Le Doussal, Wiese 2004
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FIG. 1. (a) Experimental setup. (b) Unzipping (red) and rezipping (blue) FDCs demonstrating equilibrium behaviour. The residual hysteresis
at the end of the FDC is due to the DNA end-loop that slows down the initiation of stem formation upon reconvolution. (c) Experimental
FDCs, F (w), for various salt concentrations. The mean pinning force varies between 12-17pN, and is non-universal.

Fw followed by abrupt drops caused by the cooperative un-
zipping (or rezipping) of a group of base pairs. The number
of basepairs released and absorbed in the rips has been pre-
viously measured and range from a few tens to hundreds of
basepairs [7].

The slope of each segment, equivalent to the effective stiff-
ness m2, decreases during the experiment, permitting us to
measure the scaling of �m,T (w) with m2. In fact, m2 de-
pends on the combined effects of the optical trap, and the
elastic response of the molecular construct (ssDNA, dsDNA
handles). It can be written as, see Eq. (B27)

1

m2
=

1

kb
+

w

zk1
, (4)

where kb is the stiffness of the naked bead (no hairpin at-
tached), while z ⌘ hz1i is the mean extension and k1 the
stiffness of one nucleotide. Modeling the elastic response of
the hairpin [8] shows that k1 ⇡ 130pN/nm and z ⇡ 0.45nm
at the critical force fc ⇡ 15 pN, which gives a slope of about
(zk1)�1 ⇡ 0.02pN�1. This result agrees with the experi-
mental measurement of the slope shown in Fig. 2. Eq. (4)
implies that the larger the length of the unpaired DNA, the
lower the effective stiffness. To verify this behaviour, we split
the FDCs into four regions (see inset of Fig. 2). This is a
compromise: while smaller segments yield smaller variation
in m2, segments must be taken sufficiently large for a reliable
statistics.

As mentioned above, force correlations in the Sinai model
can be framed in terms of the functional renormalisation group
(FRG). The FRG arises as the field theory approach to disor-
dered systems for interfaces [10–20], generalising the d = 0
case described by the Sinai model. The FRG predicts the ex-
istence of two universality classes, critical depinning (non-
equilibrium) and equilibrium (considered here). In equilib-
rium, the T ! 0 limit of �m,T (w) in Eq. (3), can be written

m�2[pN�1 · nm]

FIG. 2. The measured effective confining potential m2, compared
to the prediction (4) is checked in the main plot. A weighted fit and
extrapolation to w = 0 yields a stiffness of the optical trap of about
m2

0 = 0.05± 0.01pN · nm�1. Inset: Illustration of the four studied
regions as mentioned in the main text.

as

�m(w) = m4⇢2m�̃(w/⇢m), ⇢m ⇠ m�⇣ , (5)

with �̃(w) the shape function. The scaling relation for ⇢m
defines the roughness exponent. The FRG allows for observ-
ables to be computed perturbatively in an expansion around
the upper critical dimension, here parameterised by " = 4�d.
The shape function �̃(w) is the fixed point of an FRG flow
equation,

0 = ("�2⇣)�̃(w) + ⇣w�̃0(w) � 1

2
@2
w

⇥
�̃(w)��̃(0)

⇤2
+ . . .

(6)
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FIG. 4. Inset: The function �m(w) for the four regions
changes with the measured m (see Fig 5). Main: Collapse of
�m(w) according to Eq. (4) with ⇣ = 4/3. In black we show
the theoretical �m(w), with ⇢m = 29(3)nm as predicted by
the microscopic disorder.

This relation holds for the microscopic �1(u) and the
measured �m(w), as the area under �m(w) is preserved
by the RG flow, as previously discussed. A constant � in
Eq. (8) implies ⇣ = 4/3 for all m in Eq. (4). Eq. (8) then
yields the analytic prediction

⇢m =

" R
w>0 �1(w)

m4
R
w>0 �̃(w)

#1/3

. (9)

In appendix C, we discuss how the microscopic correla-
tor �1(w) can be obtained from the binding energies,
using our estimate of �1(0) ⇡ 10(2)pN2, which decays
to half this value for base-pair distance 1, and to 0 for
base-pair distance 2, corresponding to 1.6nm. A linear
interpolation of �1(u) between these values gives � =
8(2)pN2 · nm in Eq. (8). Using

R
w>0 �̃(w) = 0.252 from

Eq. (7), and substituting in Eq. (9) gives ⇢m = 29(3)nm
for region 1 in agreement with the value previously ob-
tained (⇢m ⇡ 27nm for m2 = 0.036 pN/nm in Fig. 5).
In Fig. 4 (main) we show the predicted force correlator
(black curve) with the predicted ⇢m = 29(3)nm.

Conclusions. We tested Sinai’s model of equilibrium
force correlations and its universality in DNA unzip-
ping experiments. In DNA the binding energies be-
tween complementary base pairs are correlated up to a
2 bp distance, making it a suitable realization of Sinai’s
model. We experimentally measured the roughness expo-
nent ⇣ finding agreement with Sinai’s prediction, ⇣ = 4/3.
While predictions for critical exponents are common-
place, far more di�cult is to predict the amplitude and
the correlation length of correlation functions in critical
phenomena. Here we showed that the amplitude of force
correlations and its correlation length can be predicted

5

We can go one step further: In RF systems, the
potential correlator grows linearly at large distances,
1
2 (V (u) � V (u0))2 ' �|u � u0|. The constant � is related
to the force correlator � as

� =

Z 1

0
�0(u)du ⌘

Z 1

0
�m(w)dw. (10)

This relation is valid both for the microscopic force correlator
�0(u), as for the measured effective force correlator �m(w),
since such a LR correlated function cannot be changed under
RG. This enforces ⇣ = 4/3 in Eq. (5), and conservation of the
integral (10). The variance of the microscopically measured
�0(0) =???, which decays to half this value for base-pair
distance 1, and to 0 for base-pair distance 2. Interpolating
linearly, this yields � =??? for the integral. Eq. (5) then yields
the analytic prediction

⇢m =

" R
w>0 �0(w)

m4
R

w>0 �̃(w)

#1/3

. (11)

Using
R

w>0 �̃(w) = 0.252 from Eq. (9) this gives ⇢m =???

Observable region 1 region 2 region 3 region 4
w[nm] [0, 800] [800,2200] [2200, 4200] [4200,6200]

m2[pN/nm] 0.036(3) 0.027(3) 0.016(4) 0.007(4)

�m [nm] 27(3) 29(3) 42(4) 76(5)

�m(0)[pN2] 0.44 0.38 0.31 0.18

�0
m(0)[pN2/nm] 0.032 0.018 0.0099 0.0032

TABLE I. Properties of the force correlator for each of the four seg-
ments as shown in Fig. 2. The scale ⇢m is obtained from the measure-
ment of �m(0)/�0

m(0) times a numerical constant to get back the
scale ⇢m in Eq. (5). Using Eq. (9), this constant is �̃m(0)/�̃0

m(0) =
1.36.

IV. CONCLUSION

To the best of our knowledge, this is the first test of Sinai’s
model in an experiment. Sinai’s model predicts, and our ex-
periments confirm, that there is a single scale for the corre-
lator of forces. On the theoretical side, this is a gratifying
result. In particular, one can contrast this experiment to the
peeling of complementary RNA-DNA strands, belonging to
the depinning universality class, and characterised by a sig-
nificantly larger effective stiffness m2. It also has a larger
correlation length of about 186 base pairs as compared to our
24 to 76. The possibility to open base pairs by thermal fluc-
tuations is reduced to at most a few. Thus, a description by
zero-temperature depinning is sufficient there, whereas ther-
mal fluctuations play a relevant role here.

On an experimental side, our results are relevant for ...
Ideas for different hairpin constructions where we can mea-
sure �(w) ?
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FIG. 5. Top: Properties of the force correlator for the four re-
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m(0),
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m(0) = 1.36, see Eq. (7). Bottom: The
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from the e↵ective sti↵ness of the molecular construct
m2 and the energy parameters of the nearest-neighbour
model in DNA thermodynamics used for DNA melting
curves and secondary structure predictions [24, 25]. We
get experimental values for ⇢m that are within 10% of the
predicted ones: e.g. for region 1, ⇢m ⇡ 27nm (measured)
versus ⇢m ⇡ 29nm (predicted).

It is interesting to compare our unzipping experiment
to the peeling of complementary RNA-DNA strands [7].
Peeling is a highly irreversible process belonging to the
depinning universality class. It is characterized by a sig-
nificantly larger e↵ective sti↵ness m2, and a larger cor-
relation length of about 186 bp as compared to the 26
bp to 77 bp of DNA unzipping. The high energies re-
quired for DNA peeling make the T = 0 nonequilibrium
depinning transition relevant there, whereas for DNA un-
zipping thermal fluctuations occur in equilibrium condi-
tions.

To further test universality, one might consider unzip-
ping hybrid RNA/DNA or RNA molecules, where bind-
ing energies are larger than in DNA [26]. It would also
be interesting to go beyond random sequences by design-
ing DNA sequences with long-range correlations. Finally,
one could consider DNAs with periodically repeated se-
quences, a physical realization of periodic disorder rel-
evant for charge-density waves. Overall, single-molecule
unzipping o↵ers many exciting possibilities to experimen-
tally investigate critical phenomena in random polymers.
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Magnetic domain walls (d = 2)

2

(a) (b)

FIG. 1. Barkhausen noise in a 200 nm ribbon of FeSiB, a bulk magnet with SR elasticity. The signal in (a) is characterised by sudden bursts of
activity which are recorded as an electric current, due to a change in the magnetic flux. Amplifier noise is visible, leading to negative u̇w. (b)
The connected part of the interface position, w � uw, obtained after integration. The linearly increasing parts have slope one by construction,
and correspond to an increasing magnetic field, followed by sudden jumps in force when the domain wall moves forward.*** w = 1 is 10000
frames.

II. MEASUREMENT PROCEDURE

Eq. (3) above uses uw, the position of the center of mass
of the interface. The data at our disposal is the change in the
magnetic flux, itself proportional to the center-of-mass veloc-
ity u̇w. As can be seen in Fig. 1a, this signal is characterized
by bursts when the domain wall moves forward, and a van-
ishing signal when the domain wall is at rest, plus some addi-
tional white noise from the measurement device3. This allows
us to reconstruct uw, see Fig. 1b. The domain-wall position
uw is characterized by linearly increasing parts corresponding
to an increasing magnetic field (i.e. w), followed by sudden
drops in w� uw when the domain wall moves forward. Since
the linear increase is due to w, its slope is one. Quite strik-
ingly, this allows us to reconstruct the scale of w � uw from
the measurement itself, reducing the unknown scales in the
experiment to a single one! Details of the construction of uw

from u̇w are discussed in appendix B.
Our definition (3) for �v(w) depends on the driving veloc-

ity v. What we are after is its zero-velocity limit,

�(w) = lim
v!0

�v(w). (5)

The observable �(w) is the central object of our work. It
is also the central object of the field theory, necessary for all
quantitative predictions [6, 18, 28–30]. In an experiment it
is not possible to take the limit of v ! 0. The effect of the
finite driving velocity v is to round the cusp |�0(0+)| = �
(see Eq. (4)) in a boundary layer of size �w ⇠ v⌧ , where ⌧

3 Since the interface only moves forward [26] u̇w � 0, incidences on Fig. 1
violating this condition are due to noise.

is the timescale set by the response function R(t) ' 1
⌧ e

�t/⌧ ,
see Fig. 2c for an example. One can show [23] that

�v(w) =

Z 1

0
dt

Z 1

0
dt0R(t)R(t0)�(w � v(t� t0)). (6)

In appendix D we summarize the method of [23] to recon-
struct �(w) from the measured �v(w). The result is

�(w) = �v(w) + ⌧2�u̇(w), (7)

where �u̇(w) is the auto-correlation function of u̇w, read-
ily accessible in a Barkhausen experiment. This allows us to
extract the correlation function �(w) in Eq. (5), by plotting
the r.h.s. and finding the time scale ⌧ that best eliminates the
boundary layer. As we demonstrate below, Eq. (7) allows us
to eliminate a relatively large boundary layer of size �w = v⌧
but it creates a smaller one of size �0w = v⌧ 0. This we believe
is due to additional fast modes contributing to the response
function in Eq. (6). This is further discussed in appendix E.

In the small-v limit Eq. (6) can be approximated by a
boundary-layer ansatz [23]. Whereas this method may be
more robust for noisy data, it is less precise. We discuss this
in appendix D.

III. RESULTS

***Gianfranco: The results are in units where the small-
est driving velocity is set to 1. For better visibility, axes
have been rescaled by powers of 10, indicated in the captions.
Timescales cited are in units of frames.***

From the samples at our disposal we retain four, summa-
rized in table II: two SR ones and two LR ones, and for each

current in a pickup coil ……… allows to construct :

Δ̂v(w − w′�) := [w − uw] [w′ �− uw′ �]
c

=
1

m4
FwFw′�

c

eliminate one unknown scale by the definition  

(data by F. Bohn, G. Durin, R.L. Sommer)
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FIG. 2. (a) Construction of the fixed-point function �(w) for a 200 nm ribbon of a FeSiB bulk magnet (SR elasticity, no eddy currents). In
red the raw data. In blue dashed, the result from Eq. (7) using ⌧ = 1700. In green dotted the extrapolation to w = 0. The small remaining
peak (black dashed minus green dotted), attributed to noise from the amplifier, is at a much smaller time scale.
(b) Comparison of the fixed-point function using the green curve of (a), to theoretical candidates, fixing scales by �(0) and �0(0+). The
theory candidates from top to bottom are: exponential function (red, dotted), solution in d = 0 [23, 27] (blue, dashed), 2-loop FRG for d = 2
obtained by Pade resummation (orange, dotted), 1-loop FRG solution, valid for d = dc (black, dot-dashed). Error bars in green represent 1-�
confidence intervals. The inset shows theory minus data in the corresponding color code, favoring the d = 2 fixed point at two loop (with error
bars for this curve only). For better visibility w-axes have been rescaled by 104.
(c) Check of the unfolding procedure (7) for a 25 gr FeCoB bulk magnet (SR elasticity, noticeable eddy currents), at different driving velocities
v, using the same time scale ⌧ = 250; magnified in the inset. Apart from a small deviation for v = 3 they extrapolate to the same function.
(d) Comparison of �(w) from (c) to the theoretical candidates, using the same color code as in Fig. (b). The data is consistent with the 2-loop
FRG fixed point at " = 2. For better visibility w-axes have been rescaled by 104.

sample material interactions eddy currents

1 200nm ribbon of FeSiB SR no
2 25gr FeCoB bulk magnet SR yes
3 200nm Py thin film LR no
4 FeSi 7.8% bulk magnet LR yes

TABLE I. The four samples.

class one without, and one with noticeable eddy current ef-
fects. We start our analysis with the SR samples.

Short-range sample without eddy currents. The first sam-
ple is a 200nm ribbon of FeSiB. As one can see on Fig. 2a,
the raw data for �(w) are rounded in a boundary layer of
size �w ⇡ 0.6, due to the finite driving velocity. To ob-
tain the zero-driving-velocity limit �(w), we use Eq. (7) with
⌧ = 1700. This reduces the boundary layer (non-straight part)

Magnetic domain walls SR elasticity (d = 2)
^

^ ^



4

(a) (b)

exponential

?
d = 0

�� 

1-loop
d = dc��*

2-loop
d = 2

��
�* measurement

?

exponential

?

d = 0
�� 

1-loop
d = dc�

��*

2-loop
d = 2

��
�*

measurement

?

FIG. 3. The measured function �(w) for two LR samples: (a) a 200nm Py thin film (with negligible eddy currents); (b) FeSi 7.8% (with eddy
currents). Both measurements are in agreement with the 1-loop FRG fixed point.

from �w ⇡ 0.6 (in red, solid) to �w ⇡ 0.1 (in blue, dashed),
allowing us to extrapolate to w = 0 (shown in dotted grey). It
is this curve we report as our final result on Fig. 2b (in solid
grey).

The measured values for �(0) and �0(0+) are then used
to fix all scales in the fixed-point functions we wish to com-
pare to on Fig. 2b. These are from bottom to top (analytic
expressions are given in appendix C): 1-loop FRG (black, dot-
dashed, relevant for d = dc, i.e. LR elasticity), 2-loop FRG in
d = 2 (relevant for SR elasticity, in orange, dotted) [19, 20],
the d = 0 solution [23, 27] (blue, dashed) and a pure exponen-
tial (red, dotted), the latter, not realized in magnets, given as
reference points. The data agree best, and within error bars,
with the 2-loop FRG fixed point predicted by the theory for
d = 2. We note that from Fig. 2b we extract a correlation
length ⇢ := �(0)/�0(0) ⇡ 3. This is in agreement with the
scale on which �u̇(w) decays to 0 (see Fig. 8a in appendix
G).
Short-range sample with eddy currents. Our second sam-
ple with SR elasticity is a 25gr FeCoB bulk magnet where
eddy currents are non-negligible. Here a range of different
driving velocities is at our disposal. As eddy-current effects
and non-linearities become more relevant as v increases, we
focus on the small-v limit of v = 1, 2, 3. Whereas for the
previous sample, finding �v(0) was sufficient, here there is
additional (white) noise contributing to u̇. After integration
this contributes a linear function to �(w), and what we mea-
sure is

�raw
v (0)��raw

v (w) = �v(0)��v(w) + �noise|w|, (8)

necessitating to subtract a linear term �noise|w| (see Fig. 9).
Fig. 2c shows �v(w) after this subtraction, for driving veloci-
ties v = 1, 2, 3 in blue, red and green. The inset shows a zoom
into the boundary layer with unfolding by Eq. (7) shown in the
same colour code. Having data at different v at our disposal

allows us to test that

(i) the boundary layer scales linearly in v, i.e. �w ⇠ v⌧ .

(ii) �v(w) for v = 1, 2, 3 unfold to the same �(w).

Both conditions are satisfied using ⌧ = 250. Comparison to
the fixed-point candidates proceeds as before and is shown in
Fig. 2d, using both v = 1 and v = 2 to improve the statis-
tics. Although the error bars are non-negligible, the data is
in agreement with the predicted 2-loop fixed point in d = 2,
as for the SR sample without eddy currents shown in Fig. 2b.
Note though that for w > 0.7 we observe a slower decay and
the data slightly deviates from the 2-loop result, albeit well
within error bars. We do not know whether this is a statistical
fluctuation, or an effect due to the eddy currents.
Long-range sample without eddy currents. Long-ranged
elasticity arises in materials, here an 200nm Py thin film,
with strong dipolar interactions between the magnetic domain
walls. For long-ranged elasticity the upper critical dimension
dc = 2 coincides with the dimension of the domain wall. The
common belief is that then MF theory, i.e. the ABBM model,
is sufficient to describe the system. A glance at Fig. 3a shows
that the experimental result is in contradiction to the predic-
tion (4) of the ABBM model. While the latter holds at small
w, at larger w the correlator �(w) decays to zero. Field the-
ory predicts [19, 20, 31, 32] that fluctuations are relevant at
the upper critical dimension, and that the correlator �(w) is
given by the 1-loop FRG fixed point. Fig. 3a shows that this
is indeed the case.
Long-range sample with eddy currents. Our final sample is
a FeSi 7.8% bulk magnet where the elasticity is long-ranged
and eddy currents non-negligible. Fig. 3b shows a comparison
of the unfolded data to the four theoretical candidates. As
for the LR sample without eddy currents, the agreement is
excellent with the 1-loop FRG solution, and inconsistent with

Magnetic domain walls (d = 2) with LR elasticity

• 1-loop FRG gives fixed point. 
• this is not ABBM disorder: 
• ABBM only gives short-scale behavior correctly

Δ(0) − Δ(w) ≠ σ |w |

^
^ ^
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⟨Sw1
Sw2

⟩

⟨S⟩2 − 1 = − Δ̂′�′�(w1 − w2) .
rescaled version of Δ

LR (ϵ = 0)

Δ̂′�′�(0+) ≃ ( 2
9

+ 0.107533ϵ + 𝒪(ϵ2)) 1
m4LdI1

.

m4LdI1 ≥ 1Bound is minimized in          for mL ≤ 2.4.d = 2

-expansion:ϵ

Experiments use optimal mL ! Effectively one domain wall!

−Δ̂′�′�(w)⟨Sw1
Sw2

⟩

⟨S⟩2 − 1
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Figure 52. The center-of mass velocity distribution P (u̇). The weight of
the peak at u̇ = vkick is �t

hT i
⇠ L�z

⇠ mz , where T is the duration of
an avalanche and �t the time discretization step. The analytic result (black
dashed line) is from Eq. (385) of Ref. [321], the dotted gray line the pure
power law P (u̇) ⇠ u̇�a, with a = �

10
23 = �0.435 as given in Eq. (485).

There is no adjustable (fitting) parameter, thus convergence to the theory
including all scales is read off from the plot. Plot from Ref. [466].

Let us also mention the studies of [458] for avalanches
with a large aspect ratio in the BFM which are rare, and
with fixed seed position [465] which are difficult to realize
in an experiment.

The velocity distribution. The velocity distribution was
analytically obtained in Refs. [467, 321], and numerically
checked in Ref. [466]. The scaling relation of Eq. (485)
actually predicts a negative exponent a = �10/23,
implying P (u̇) ⇠ u̇10/23. Despite the change in sign, this
is beautifully verified in Fig. 52.

4.20. Correlations between avalanches

In section 2.10, we had asked how avalanche moments are
encoded in �(w), and found the key relation (104). We
can further ask how avalanches at w1 and w2 are correlated.
This can be evaluated along the same lines [468]: On one
hand,
[uw1+�w1

� uw1
][uw2+�w2

� uw2
]

= hSw1
Sw2

i �w1 �w2 ⇢2(w1 � w2) + O(�w3), (604)
where ⇢2(w) is the probability to have two shocks a
distance w apart. On the other hand,
[uw1+�w1

� uw1
][uw2+�w2

� uw2
] � �w1�w2

=
1

m4Ld

⇥
�(w1+�w1�w2��w2) � �(w1�w2��w2)

� �(w1+�w1�w2) + �(w1�w2)
⇤

= ��w1�w2

�00(w1�w2)

m4Ld
+ O(�w3). (605)

Using Eq. (99) in Eq. (604), and comparing to Eq. (605) for
small �w implies
hSw1

Sw2
ic

hSi2
⌘ hSw1

Sw2
i

hSi2
� 1 = ��00(w1 � w2)

m4Ld
. (606)
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Figure 53. Anticorrelation of avalanches as a function of w, for two
samples with eddy currents, SR (a), and LR (b). The solid line is the
prediction for ��00(w)/(m4Ld) from Eq. (606), as obtained from the
experiment. The dashed lines are bounds on the maximally achievable
reduction from the ✏-expansion (608), with error bars in cyan for SR. There
are no fitting parameters.

Since hSw1
Sw2

i � 0, the r.h.s. is bounded from below by
�1, or
�00(w)

m4Ld
 �00(0+)

m4Ld
 1. (607)

For the Kida and Sinai models, this yields the bounds
�̃00(0+)  1, which are indeed satisfied by Eqs. (191) and
(203). At depinning, the DPM has �̃00(0+) = 0.5, see
Eq. (367). In the perturbative FRG, Eqs. (63) and (341),
extended by the 2-loop results of [124], imply
�00(0+)

m4Ld
'

✓
2

9
+ 0.107533✏ + O(✏2)

◆
1

m4LdI1

. (608)

The diagram I1 defined in Eq. (58) as an integral, here
depends both on m and L, and is evaluated as a discrete
sum over momenta ki = ni2⇡/L, ni 2 Z. One shows
that m4LdI1 � 1, the bound is saturated for mL ! 0,
and deviations from the bound remain smaller than 10% for
mL  3.2 in d = 1, mL  2.4 in d = 2, mL  1.8
in d = 3, and mL  0.6 in d = 4, indicating optimal
choices for the sample size. The experiments [328] shown
on Fig. 53 satisfy (606), and almost saturate the bound
(608). Further relations are studied in Refs. [468, 469].

4.21. Avalanches with retardation

In magnetic systems, a change in the magnetization induces
an eddy current, which in turn can reignite an avalanche
which had already stopped [470]. The simplest model
exhibiting this phenomena, and which remains analytically
solvable [464] reads

@tu(t) = F
�
u(t)

�
+ m2

⇥
w(t) � u(t)

⇤
� ah(t), (609)

⌧@th(t) = @tu(t) � h(t). (610)

While many observables can be obtained analytically [464]
and measured, e.g. the temporal shape given S, other ones
are not well-defined, as the duration of an avalanche. As
due to the eddy current h(t), an avalanche can restart, this
complicates the data-analysis in real magnets [319].
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1-loop integral
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10
23 = �0.435 as given in Eq. (485).

There is no adjustable (fitting) parameter, thus convergence to the theory
including all scales is read off from the plot. Plot from Ref. [466].

Let us also mention the studies of [458] for avalanches
with a large aspect ratio in the BFM which are rare, and
with fixed seed position [465] which are difficult to realize
in an experiment.

The velocity distribution. The velocity distribution was
analytically obtained in Refs. [467, 321], and numerically
checked in Ref. [466]. The scaling relation of Eq. (485)
actually predicts a negative exponent a = �10/23,
implying P (u̇) ⇠ u̇10/23. Despite the change in sign, this
is beautifully verified in Fig. 52.

4.20. Correlations between avalanches

In section 2.10, we had asked how avalanche moments are
encoded in �(w), and found the key relation (104). We
can further ask how avalanches at w1 and w2 are correlated.
This can be evaluated along the same lines [468]: On one
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� uw1
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� uw2
]

= hSw1
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The diagram I1 defined in Eq. (58) as an integral, here
depends both on m and L, and is evaluated as a discrete
sum over momenta ki = ni2⇡/L, ni 2 Z. One shows
that m4LdI1 � 1, the bound is saturated for mL ! 0,
and deviations from the bound remain smaller than 10% for
mL  3.2 in d = 1, mL  2.4 in d = 2, mL  1.8
in d = 3, and mL  0.6 in d = 4, indicating optimal
choices for the sample size. The experiments [328] shown
on Fig. 53 satisfy (606), and almost saturate the bound
(608). Further relations are studied in Refs. [468, 469].

4.21. Avalanches with retardation

In magnetic systems, a change in the magnetization induces
an eddy current, which in turn can reignite an avalanche
which had already stopped [470]. The simplest model
exhibiting this phenomena, and which remains analytically
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While many observables can be obtained analytically [464]
and measured, e.g. the temporal shape given S, other ones
are not well-defined, as the duration of an avalanche. As
due to the eddy current h(t), an avalanche can restart, this
complicates the data-analysis in real magnets [319].
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FIG. 1. (a) Schematic illustration of the experimental
setup. (b) Digitized interface, using an Apple scanner with
resolution 300 pixels per inch. The horizontal size of the pa-
per is 20 cm. The function h(x, t ~ oo) was obtained as
the highest dark pixel in column z. (c) Typical result of the
model with width L = 400 and p = p, 0.47.

v4

FIG. 3. Explanation of the model for interface growth
with erosion of overhangs. Wet cells are indicated by shaded
cells. Dry cells are randomly blocked with probability p (in-
dicated by 0) or unblocked with probability 1 —p (indicated
by 1). The interfaces between wet and dry cells are shown by
aheavyline. (a) t=0, (b) t= 1, (c) t=2and(d) t=3.

which support a scaling of the form c(l, 0) l with
o. = 0.63 6 0.04.
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The model we propose is defined as follows: on a square
lattice of edge L (with periodic boundary conditions) we
block a fraction p of the cells to correspond to the inho-
mogeneous nature of the paper towel. At t = 0, we regard
the "interface" to be the bold horizontal line shown in
Fig. 3(a). At t = 1 we randomly choose a cell [labeled X
in Fig. 3(b)] which is one of the unblocked dry cells that
are nearest neighbors to the interface. We wet cell X
and any cells that are below it in the same column. This
process is then iterated. For example, Fig. 3(c) shows
that at t = 2 we choose cell Y a second unblocked cell to
wet, while Fig. 3(d) shows that at t = 3 we wet cell Z
and also cell Z' below it [8].
We find that for p below a critical threshold p, = p, (L)

[9] the interface propagates without stopping, while for
p above p, the interface does not propagate. Figure 2(b)
displays the scaling behavior of the model at criticality,
and we find that n = 0.636 0.02, a value identical to the
experimental value of Fig. 2(a).

FIG. 2. Log-log plots showing the dependence on length
scale E of the height-height correlation function c(E, O) for
(a) the experimental data (averaging over 15 difFerent ex-
periments), and (b) the numerical results (averaging over
1000 different realizations for system size L = 16384 and
for p = 0.469, very close to p, for the infinite system). The
slope for the set of experimental points indicated by solid
circles (two decades) is 0.63 + 0.04, while the slope for the
simulation points indicated by solid circles (three decades) is
0.63 + 0.02.

IV. DISCUSSION
Next we argue that the model presented above is con-

nected to directed percolation [10], thereby providing a
theoretical basis for the observed and calculated values
of the anomalous roughening exponent o.. The propa-
gation of the interface will stop when it reaches for the
Erst time a directed path of blocked cells leading from
West to East—this path is such that one can walk on
it from West to East without turning to the West (see
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process is then iterated. For example, Fig. 3(c) shows
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wet, while Fig. 3(d) shows that at t = 3 we wet cell Z
and also cell Z' below it [8].
We find that for p below a critical threshold p, = p, (L)

[9] the interface propagates without stopping, while for
p above p, the interface does not propagate. Figure 2(b)
displays the scaling behavior of the model at criticality,
and we find that n = 0.636 0.02, a value identical to the
experimental value of Fig. 2(a).
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scale E of the height-height correlation function c(E, O) for
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periments), and (b) the numerical results (averaging over
1000 different realizations for system size L = 16384 and
for p = 0.469, very close to p, for the infinite system). The
slope for the set of experimental points indicated by solid
circles (two decades) is 0.63 + 0.04, while the slope for the
simulation points indicated by solid circles (three decades) is
0.63 + 0.02.

IV. DISCUSSION
Next we argue that the model presented above is con-

nected to directed percolation [10], thereby providing a
theoretical basis for the observed and calculated values
of the anomalous roughening exponent o.. The propa-
gation of the interface will stop when it reaches for the
Erst time a directed path of blocked cells leading from
West to East—this path is such that one can walk on
it from West to East without turning to the West (see
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Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine
roughening, pinning, and depinning transitions. We measure spatial and temporal fluctuations of the front
in 1þ 1 dimensions, controlled by a single parameter, the mean flow velocity. Three distinct universality
classes are observed, consistent with the Kardar-Parisi-Zhang (KPZ) class for fast advancing or receding
fronts, the quenched KPZ class (positive-qKPZ) when the mean flow approximately cancels the reaction
rate, and the negative-qKPZ class for slowly receding fronts. Both qKPZ classes exhibit distinct depinning
transitions, in agreement with the theory.

DOI: 10.1103/PhysRevLett.114.234502 PACS numbers: 47.56.+r, 61.43.-j, 82.40.-g

Growing interfaces are ubiquitous in nature, appearing in
situations as different as bacterial colonies [1], solidifica-
tion [2], atomic layer deposition [3,4], liquid interfaces in
porous media [5–7], or crack propagation in heterogeneous
materials [8,9]. The formation of scale-free structures in
these systems raises the important question of universality
in out-of-equilibrium phenomena.
In this Letter, we consider the propagation of a reaction

front inside a porous medium. Resulting from the balance
between the molecular diffusionDm and the reaction rate ~α,
autocatalytic reactions can develop a traveling front. In the
absence of an externally imposed flow, the reaction front
develops into a flat horizontal front, propagating with a
constant velocity Vχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm ~α=2

p
, and a stationary con-

centration profile of width lχ ¼ Dm=Vχ . When coupled
with the heterogeneous flow field of the porous medium,
the fronts become rough, and modify their behavior
accordingly with the flow strength and mean orientation
relative to the chemical reaction direction. They propagate
either downstream or upstream, or can remain frozen over a
range of counterflow rates, delimited by two distinct
depinning transitions [10,11]. Until now, however, their
universality classes have not been identified.
Using both experimental and numerical approaches, we

investigate their spatial and temporal scaling over the whole
range of the externally imposed flow. In the vicinity of both
depinning points, these reaction fronts display transient
static configurations with distinct morphologies depending
on the front propagation direction, displayed in Fig. 1. We
show that this is a well-controlled system which encom-
passes several universality classes.
Two important classes predicted by the theory, and

discussed below, are (i) nonlinear stochastic growth gov-
erned by the (thermal) Kardar-Parisi-Zhang (KPZ) equa-
tion (1), and (ii) growth where both the nonlinearity and
quenched disorder are present, described by the quenched

KPZ (qKPZ) equation (2). It divides into two subclasses,
positive qKPZ and negative qKPZ, depending on the sign
of the nonlinearity λ.
It has been difficult to find unambiguous experimental

realizations, due to long-range effects, quenched disorder,
and a mixing of (i) and (ii) [1,12–14]. Recently, experi-
ments on turbulent liquid crystals [13,15] made a precise
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Figure 60. The cellular automaton model TL92. Blocking cells, i.e. cells
above the threshold are drawn in cyan; those below in white. The initial
configuration is the string at height 1 (dark blue). The interface moves up.
An intermediate configuration is shown in red, the final configuration in
black. Open circles represent unstable points, i.e. points which can move
forward; closed circles are stable.

i=t

h
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Figure 61. Simulation of the continuous version of the cellular automaton
model TL92. The continuous configurations (in color) converge reliably
against the directed-percolation solution (black, with filled circles).

unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f

�
i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]

Table 3. The exponents of qKPZ.

can be implemented both for open and periodic boundary
conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,

@tu(x, t) = cr2u(x, t) + � [ru(x, t)]2 + m2[w � u(x, t)]

+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))

Hel[u] =
LX

i=1

Eel

�
u(i) � u(i + 1)

�
, (660)

Eel(u) =

⇢
0 , u  1

1

24
(u2 � 1)2 , |u| > 1.

(661)

This implies an elastic nearest-neighbor force

fel(u) := �@uEel(u) =

⇢
0 , u  1

� 1

6
u(u2 � 1) , |u| > 1

(662)

It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads

@tu(i, t) = fel

�
u(i, t)�u(i+1, t)

�
+fel

�
u(i, t)�u(i�1, t)

�

+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the
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Figure 60. The cellular automaton model TL92. Blocking cells, i.e. cells
above the threshold are drawn in cyan; those below in white. The initial
configuration is the string at height 1 (dark blue). The interface moves up.
An intermediate configuration is shown in red, the final configuration in
black. Open circles represent unstable points, i.e. points which can move
forward; closed circles are stable.
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Figure 61. Simulation of the continuous version of the cellular automaton
model TL92. The continuous configurations (in color) converge reliably
against the directed-percolation solution (black, with filled circles).

unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f

�
i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]
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conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,
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+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))
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It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads
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+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the

The Tang-Leschhorn cellular automaton of 1992
TL92

variants: Buldyrev, S. Havlin and H.E. Stanley1992
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unstable(i)
# links cannot be longer than 2
if h(i) � h(neighbor) � 2 return false
# move forward if open
if f
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i, h(i)

�
> fc return true

# move forward if a neighbor is 2 ahead
if h(neighbor) � h(i) � 2 return true

end

This cellular automaton models a fluid invading a porous
medium. Invasion takes place if a cell is open (second
“if” above), or can be invaded from the side (third “if”).
The process stops if all points (i, h(i)) are stable. As
is illustrated in Fig. 60, this stopped configuration is a
directed path from left to right passing only through blocked
sites, commonly referred to as a directed percolation path.
One can convince oneself that upon stopping the algorithm
yields the lowest-lying directed percolation path. This

d = 1 d = 2 d = 3
⇣ 0.63 [556] 0.45 ?
z 1 [556] 1.15 ± 0.05 [560] 1.36 ± 0.05 [560]
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can be implemented both for open and periodic boundary
conditions. The latter are chosen in Fig. 60. The
automaton TL92 can straightforwardly be generalized to
higher dimensions [559], but there is a priori no directed
percolation process in the orthogonal direction.

Two continuous equations of motion may be associ-
ated with this surface growth. The first is the (massive)
quenched KPZ equation,

@tu(x, t) = cr2u(x, t) + � [ru(x, t)]2 + m2[w � u(x, t)]

+ F (x, u(x, t)). (659)

This is almost the equation of motion (302) for a disordered
elastic interface; the additional non-linear term proportional
to � is referred to as a KPZ-term, due to its appearance
in the famous KPZ equation of non-linear surface growth
[561]. The latter accounts for the surface growing in its
normal direction, and not in the direction of h. For a
derivation see section 7.1. For an early reference see [562].
In the present context it was first observed in simulations
[563], where an increase in the drift-velocity was found
upon tilting the interface.

The second model one can associate with the
automaton TL92 is depinning of an elastic interface.
As TL92 makes no distinction between nearest-neighbor
distances 0 or ±1, has strong interactions at distance 2, and
forbids larger distances, the corresponding elastic energy
Hel[u] must be strongly anharmonic. Our choice is (with
u(L + 1) = u(1))

Hel[u] =
LX

i=1

Eel

�
u(i) � u(i + 1)

�
, (660)

Eel(u) =

⇢
0 , u  1

1

24
(u2 � 1)2 , |u| > 1.

(661)

This implies an elastic nearest-neighbor force

fel(u) := �@uEel(u) =

⇢
0 , u  1

� 1

6
u(u2 � 1) , |u| > 1

(662)

It evaluates to �1 at u = 2, which is sufficient to overcome
any obstacle; and to �4 at u = 3, making the latter
unattainable. The full equation of motion for site i then
reads

@tu(i, t) = fel

�
u(i, t)�u(i+1, t)

�
+fel

�
u(i, t)�u(i�1, t)

�

+F (i, u(i, t)). (663)

The last term is the disorder force, which we choose to be
f(i, j) if u is within � close to j. Thus disorder acts as an
obstacle close to an integer h. To mimic TL92, we wish the

Anharmonic depinning = TL92

anharmonic depinning respects the Middleton theorem 
= return point memory (not guaranteed for qKPZ)

ℰel = ∑
i

c4

4
(ui − ui+1)4
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2

[u(x) − u(y)]2 ∼ {A |x − y |2ζ , |x − y | < ξ
B m−2ζm, |x − y | > ξ

2-point function

8

known precisely [5, 50, 51], we get precise predictions for the
former.

There are two guiding principles for these relations: all
forces at depinning have the same scaling dimension, and ev-
ery length parallel to the interface scales as x or ⇠m, while
lengths in the perpendicular direction scale as u ⇠ x⇣ ⇠
m�⇣m .

Consider Fig. 4 which shows directed-percolation paths
from left to right (in pink). They are constructed on a square
lattice, where occupied cells (in pink or cyan) are selected
with probability p, and the remaining once are unoccupied
(white). A cell (i, j) is said to be connected to the left bound-
ary (and colored pink) if it is occupied, and if at least one of
its three neighbors (i � 1, j) and (i � 1, j ± 1) is connected
to the left boundary. The system is said to percolate, if at least
one point on the right boundary is connected to the the left
boundary. To achieve periodic boundary conditions for TL92,
we further ask that this remains true for the periodically con-
tinued system.

While percolation is unlikely for small p, it is likely for
large p, with a transition at p = pc. There are three indepen-
dent exponents �, ⌫k, and ⌫?, defined via

⇢(t) :=

*
1

h

X

u

su(t)

+
t!1�! ⇢stat (29)

⇢stat ⇠ (p� pc)
� , p > pc, (30)

⇠k = |p� pc|�⌫k , (31)

⇠? = |p� pc|�⌫? . (32)

Here su(t) is the activity of site u at time t, set to one if
the site is connected to the left boundary, and zero otherwise.
h =

P
u is the height of the system, and ⇢stat the stationnary

density of active sites. ⇠k is the size of the DP cluster along
the parallel (time) direction, and ⇠? the size in the transverse
direction. The last two relations imply

⇠? ⇠ ⇠⇣k =) ⇣d=1 =
⌫?
⌫k

= 0.632613(3). (33)

This is the roughness exponent ⇣ defined in Eq. (27). All nu-
merical values are collected in table V.

For TL92, the surface is blocked by directed percolation
paths in the direction parallel to the interface (from left to
right). As a result, the distance to pc in DP corresponds to
a driving force in TL92 as p � pc = m2(u � w). Together
with u ' ⇠? ⇠ (p� pc)�⌫? , this gives m2 ⇠ (p� pc)1+⌫? ,
or (p� pc) ⇠ m

2
1+⌫? . This finally yields

u ⇠ m�⇣m =) ⇣d=1
m =

2⌫?
1 + ⌫?

= 1.046190(4). (34)

Note that in contrast to qEW ⇣m > ⇣.
In d � 2 directed-percolation paths are 1-dimensional,

whereas the interface is d-dimensional. As a result, the map-
ping breaks down and one has to introduce directed surfaces
[52]. Since no information for our simulations is gained, we
will not discuss this case.

FIG. 5. TL92 1d (left) 2-point function C(x) for different values
of m (not all shown here), plotted against x0 = 4x(L�x)

L to take
advantage of the periodic boundary conditions. We read off the ex-
ponent ⇣ = 0.636 in the linear part of the curve. (right) Scaling
of the plateau of the 2-point functions for different m.The fit yields
⇣m = 1.052.

FIG. 6. TL92 2d (left) 2-point function C(x) along the diagonal of
the system for different values of m (not all shown) plotted against
x0 = 4x

p
2(L

p
2�x

p
2)p

2L
. The exponent ⇣ ⇡ 0.47 is obtained from the

linear part of the curve. (right) Scaling of the plateau of the 2-point
functions for different m. The fit yields ⇣m = 0.70.

C. Results for the 2-point function, ⇣ and ⇣m

For TL92 in d = 1, the 2-point function is shown on Fig. 5.
d = 2 is covered in Figs. 6-7, while Fig. 8 is for dimension
d = 3. The results for the critical exponents ⇣ and ⇣m are
summarized in Table IV.

Let us first discuss our choice of simulation parameters. To
obtain ⇣, the smallest possible m is chosen, such that there
is no system-spanning avalanche. The latter would mix the
physics of the d-dimensional interface with that of a single

ζd=1 =
ν⊥

ν∥
= 0.632613(3)

from directed percolation

ζd=1
m =

2ν⊥

1 + ν⊥
= 1.046190(4)

ζm > ζ

two distinct exponents in all d



Consequences (an example)

avalanche-size exponent different from qEW

P(S) ∼ S−τ τ = 2 −
2

d ζm

ζ
+ ζm

= 2 −
2

d + ζ
ζ
ζm



What is the appropriate long-distance theory?
Can we measure it?

η∂tu(x, t) = c∇2u(x, t) + c4 ∇[∇u(x, t)]3 − m2[u(x, t) − w]

+F(x, u(x, t))

standard elasticity non-linear elasticity

disorder force

background field

confining potential

c → 0



What is the appropriate long-distance theory?
Can we measure it?

η∂tu(x, t) = c∇2u(x, t) + c4 ∇[∇u(x, t)]3 − m2[u(x, t) − w(x, t)]

+λ[∇u(x, t)]2 + F(x, u(x, t))

standard elasticity non-linear elasticity

KPZ term disorder force

background field

confining potential

c > 0

(unchanged)

(modulated)
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FIG. 13. We drive the interface with a spatially modulated driving.
The continuous black line is the interface with blue dots representing
sites

with Eq. (28)

 c = 2
⇣m � ⇣

⇣
. (64)

A similar argument for � yields

 � = 2
⇣m � ⇣

⇣
� ⇣m. (65)

These two relations have been verified (see left of Fig. 15),
thanks to the algorithm we describe in Sec. V E.

The scaling relation for  ⌘ is obtained from ⌘@tu ⇠ m2u,
implying t ⇠ m�2� ⌘ ⇠ x(2+ ⌘)⇣/⇣m . This yields

 ⌘ = z
⇣m
⇣

� 2. (66)

E. An algorithm to measure the effective coupling constants

In order to obtain the effective � one can tilt the system and
measure the change in depinning force as in [58]. In contrast,
the effective elasticity c has to our best knowledge never been
measured. Since the field theory in Ref. [42] did not deliver
an FRG fixed point for the ratio �/c, we decided to check
numerically whether such a fixed point exists, and to extract
as much information as possible to constrain the field theory.

Our algorithm to achieve this is simple: measure the re-
sponse of the interface to perturbation, sinusoidal in space,
and constant in time. This is achieved by driving the system
with a spatially modulated background field w(x), see Fig. 13,

w(x) = w0 +A sin

✓
f
2⇡x

L

◆
. (67)

After each avalanche, we increase w(x) by �w (a constant),
w(x) ! w(x) + �w. We focus on the slowest mode f = 1.
We then measure the mean interface profile u(x). Varying the
amplitude A of the driving, we fit the response with a poly-
nomials in A. The effective parameters are then linked to
the projections on these modes. To be specific, write, with

` := L/2⇡ :

u(x) = u0(A) + u1(A) sin
⇣x
`

⌘
+ u2(A) cos

✓
2x

`

◆
+ ...

(68)
u0(A) = 0u0 +

2u0A
2 +O(A4), (69)

u1(A) = 1u1A+O(A3), (70)
u2(A) = 2u2A

2 +O(A4). (71)

The dots represent higher-order terms in A, while the double-
indexed u’s are numbers to be measured. The lower index
represents the mode, while the upper index is the order in A.
We inject this development into the noiseless KPZ equation

�m2u+ cr2u+ �(ru)2 = �m2A sin
⇣x
`

⌘
. (72)

It is the non-linear term in the qKPZ equation that generates
the higher harmonics. The parity of the number of derivatives
restricts the allowed modes to those in Eq. (68). Matching
coefficients, we find

0u0 = w0 (73)

1u1 =
m2

m2 + c
`2
, (74)

2u0 =
m2�

4`2(m2 + c
`2 )

2
, (75)

2u2 =
m4�

4`2(m2 + 4c
`2 )(m

2 + c
`2 )

2
. (76)

These relations are inverted to obtain � and c,

c(m) = m2`2
1� 1u1

1u1
, (77)

�(m) = 4m2`2
2u0

(1u1)2
. (78)

F. Checks and results

Let us start with some checks of our procedure for qEW.
There �(m) ⌘ 0, and there is no renormalization of c, as it is
protected by the statistical-tilt symmetry [4? ]. In Fig. 14 we
show simulations for harmonic depinning (Eq. (6) with c4 = 0
and c2 = 1). While � = 0, we measured the effective elastic
constant c does not renormalize and stays at c = 1 .

We next apply our procedure to TL92 and anharmonic de-
pinning in d = 1, see Fig. 15. For each m, the polynomials
were fitted on 100 different values for A, and each value of A
corresponds to a simulation of 105 independent samples. The
size varies from L = 512 to L = 2048, since for larger values
of m smaller systems are sufficient. We find

 d=1
c = 1.31± 0.04, (79)

 d=1
� = 0.28± 0.03, (80)

in agreement with their expressions in Eqs. (64)-(65), and the
numerical values given in table V.

14

FIG. 14. Computation of the effective c and � for the qEW equation.
Apart from large m, the effective elasticity c is unrenormalized, as
predicted by Statistical Tilt Symmetry. The measured non-linearity
� vanishes.

FIG. 15. Left: Scaling of c and � for anharmonic depinning in
1d. Right: Measured amplitude ratios A for TL92 and anharmonic
depinning. The second-order polynomial fits show convergence to
A ⇡ 1.10(2) for m ! 0.

We checked that higher-order relations (given in Appendix
B) give the same results. We further checked that the results
given for � are the same as those obtained as a response to
a tilt. (Note that to introduce a tilt with our driving protocol,
one has to tilt both the driving potential and the interface.).

The determination of the effective parameters � and c is not
the only application of this algorithm: one could measure the
effective decay of subleading parameters present at the begin-
ning of the flow, such as c4, and obtain valuable information
on the crossover to the qKPZ universality class. This could

be helpful for experiments and is summarized in Appendix B.
This technique is mostly limited by computer resources.

G. The universal amplitude ratio A

An important question is whether qKPZ is the proper large-
distance description of TL92, anharmonic depinning, and it-
self. To ensure this the properly renormalized non-linearity �
needs to flow to a fixed point. This is achieved by defining the
universal amplitude ratio A as

A :=
�(0)

|�0(0+)|
�

c
. (81)

The idea behind this construction is that if both � and c are
relevant, then

� [ru(x, t)]2 ⇠ cr2u(x, t) =) �

c
⇠ 1

u
(82)

On the other hand �(u) ⇠ u�0(u); taking the limit of
u ! 0 there allows to define the dimensionless quantity A
in Eq. (81). As a consequence, if the qKPZ equation is the
effective field theory in the limit of m ! 0, then the ratio A
needs to converge against the universal limit set by the qKPZ
field theory. That this is indeed the case can be seen on Fig. 15.
In the two models simulated, the amplitude ratio converges to
the same value,

Ad=1 = 1.10(2). (83)

VI. CONCLUSION

We showed through theoretical arguments and numerical
checks, that anharmonic depinning, qKPZ and the cellular au-
tomaton TL92 are in the same universality class, the qKPZ
universality class. We then elucidated the scaling relations for
driving through a parabolic confining potential. This allowed
us to understand statics and dynamics of our system. Finally
we developed an algorithm to measure the renormalized (ef-
fective) coefficients of the continuity equation. This will be
useful to constrain, and finally construct [44] the field theory
presented in a sequel of this work.

We believe that our technique to extract the effective cou-
pling constants by measuring the static response of the system
under spatially modulated perturbations may yield important
information in other systems that lack a proper field theoretic
description. We started to extend it to the KPZ equation itself.

ACKNOWLEDGMENTS

We thank Alberto Rosso for useful discussions.

[1] T. Giamarchi and P. Le Doussal, Elastic theory of flux lattices
in the presence of weak disorder, Phys. Rev. B 52 (1995) 1242–

70, cond-mat/9501087.

c

λ

qEW
(standard elasticity)

Measuring the elastic constants for 
harmonic depinning (qEW)

ln(m)



13

FIG. 13. We drive the interface with a spatially modulated driving.
The continuous black line is the interface with blue dots representing
sites

with Eq. (28)
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A similar argument for � yields
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These two relations have been verified (see left of Fig. 15),
thanks to the algorithm we describe in Sec. V E.

The scaling relation for  ⌘ is obtained from ⌘@tu ⇠ m2u,
implying t ⇠ m�2� ⌘ ⇠ x(2+ ⌘)⇣/⇣m . This yields
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E. An algorithm to measure the effective coupling constants

In order to obtain the effective � one can tilt the system and
measure the change in depinning force as in [58]. In contrast,
the effective elasticity c has to our best knowledge never been
measured. Since the field theory in Ref. [42] did not deliver
an FRG fixed point for the ratio �/c, we decided to check
numerically whether such a fixed point exists, and to extract
as much information as possible to constrain the field theory.

Our algorithm to achieve this is simple: measure the re-
sponse of the interface to perturbation, sinusoidal in space,
and constant in time. This is achieved by driving the system
with a spatially modulated background field w(x), see Fig. 13,

w(x) = w0 +A sin
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After each avalanche, we increase w(x) by �w (a constant),
w(x) ! w(x) + �w. We focus on the slowest mode f = 1.
We then measure the mean interface profile u(x). Varying the
amplitude A of the driving, we fit the response with a poly-
nomials in A. The effective parameters are then linked to
the projections on these modes. To be specific, write, with

` := L/2⇡ :

u(x) = u0(A) + u1(A) sin
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`

⌘
+ u2(A) cos
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(68)
u0(A) = 0u0 +
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2 +O(A4), (69)

u1(A) = 1u1A+O(A3), (70)
u2(A) = 2u2A

2 +O(A4). (71)

The dots represent higher-order terms in A, while the double-
indexed u’s are numbers to be measured. The lower index
represents the mode, while the upper index is the order in A.
We inject this development into the noiseless KPZ equation

�m2u+ cr2u+ �(ru)2 = �m2A sin
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`
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. (72)

It is the non-linear term in the qKPZ equation that generates
the higher harmonics. The parity of the number of derivatives
restricts the allowed modes to those in Eq. (68). Matching
coefficients, we find

0u0 = w0 (73)

1u1 =
m2

m2 + c
`2
, (74)

2u0 =
m2�

4`2(m2 + c
`2 )

2
, (75)

2u2 =
m4�

4`2(m2 + 4c
`2 )(m

2 + c
`2 )

2
. (76)

These relations are inverted to obtain � and c,

c(m) = m2`2
1� 1u1

1u1
, (77)

�(m) = 4m2`2
2u0

(1u1)2
. (78)

F. Checks and results

Let us start with some checks of our procedure for qEW.
There �(m) ⌘ 0, and there is no renormalization of c, as it is
protected by the statistical-tilt symmetry [4? ]. In Fig. 14 we
show simulations for harmonic depinning (Eq. (6) with c4 = 0
and c2 = 1). While � = 0, we measured the effective elastic
constant c does not renormalize and stays at c = 1 .

We next apply our procedure to TL92 and anharmonic de-
pinning in d = 1, see Fig. 15. For each m, the polynomials
were fitted on 100 different values for A, and each value of A
corresponds to a simulation of 105 independent samples. The
size varies from L = 512 to L = 2048, since for larger values
of m smaller systems are sufficient. We find

 d=1
c = 1.31± 0.04, (79)

 d=1
� = 0.28± 0.03, (80)

in agreement with their expressions in Eqs. (64)-(65), and the
numerical values given in table V.

Measuring the elastic 
constants

anharmonic depinning ( )c4 > 0
5

FIG. 4. Left: Effective c and � for anharmonic depinning. Right:
Convergence to the fixed point as m ! 0, both for anharmonic de-
pinning and TL92.

FIG. 5. The 1-loop corrections to c.

A. Reminder: Generation of KPZ term from anharmonic
elasticity

Let us remind how anharmonic elastic terms generate a
KPZ term at depinning [33]: To this purpose consider a stan-
dard elastic energy, supplemented by an additional anhar-
monic (quartic) term (setting c = 1 for simplicity),

Hel[u] =

Z

x

1

2
[ru(x)]2 +

c4
4

h
(ru(x))2

i2
. (33)

The corresponding terms in the equation of motion read

@tu(x, t) = r2u(x, t) + c4r
n
ru(x, t) [ru(x, t)]2

o

+... (34)

Since the r.h.s. of Eq. (34) is a total derivative, it is surprising
that a KPZ-term can be generated in the limit of a vanishing
driving velocity. This puzzle was solved in Ref. [33], where
the KPZ term arises by contracting the non-linearity with one

FIG. 6. 1-loop diagrams correcting �.

disorder,

�� =

t’

k p

0

t

= � c4
p2

Z

t>0

Z

t0>0

Z

k
e�(t+t0)(k2+m2)

�
k2p2 + 2(kp)2

�

⇥�0�u(x, t+ t0)� u(x, 0)
�
. (35)

As u(x, t+ t0)�u(x, 0) � 0, the leading term in Eq. (35) can
be written as

�� = � c4
p2

Z

t

Z

t0

Z

k
e�(t+t0)(k2+m2)

�
k2p2+2(kp)2

�
�0(0+).

(36)

Integrating over t, t0 and using the radial symmetry in k yields

�� = �c4

✓
1 +

2

d

◆Z

k

�0(0+)k2

(k2 +m2)2
. (37)

This shows that in the FRG a KPZ term is generated from the
non-linearity. As ��0(0+) > 0, its amplitude is positive. The
integral (37) has a strong UV divergence, thus the generation
of this term happens at small scales, similar to the generation
of the critical force, see appendix A 3.

B. 1-loop contributions

Here we summarize the 1-loop contributions to c, �, ⌘ and
�. This is almost the same calculation as in Ref. [33], with
a little twist: Since we work in a massive scheme, many of
the cancelations in [33] no longer exist. We remind that this
change in scheme was forced upon us by our decision to mea-
sure the effective parameters of the theory, necessitating to
drive with a confining potential. We believe that this is also
much closer to real experiments. The diagrams from the per-
turbation in � are given in Figs. 5-7.

We obtain the same equations but with coefficients ai that
differ from [33] away from the upper critical dimension. The
explicit calculations are given in appendix A. Terms with nu-
merical coefficients only (no ai) are those appearing already

λ

c
ln c

ln λ

c4

m
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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ing discussions and collaboration on the numerical part of this
project, published in [34].

Δ(w − w′�)
= m4Ld(uw − w)(uw′� − w′�)c

uw =
1
Ld ∫x

uw(x)
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given w d = 1

ρ

Δ(w)
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FIG. 14. Computation of the effective c and � for the qEW equation.
Apart from large m, the effective elasticity c is unrenormalized, as
predicted by Statistical Tilt Symmetry. The measured non-linearity
� vanishes.

FIG. 15. Left: Scaling of c and � for anharmonic depinning in
1d. Right: Measured amplitude ratios A for TL92 and anharmonic
depinning. The second-order polynomial fits show convergence to
A ⇡ 1.10(2) for m ! 0.

We checked that higher-order relations (given in Appendix
B) give the same results. We further checked that the results
given for � are the same as those obtained as a response to
a tilt. (Note that to introduce a tilt with our driving protocol,
one has to tilt both the driving potential and the interface.).

The determination of the effective parameters � and c is not
the only application of this algorithm: one could measure the
effective decay of subleading parameters present at the begin-
ning of the flow, such as c4, and obtain valuable information
on the crossover to the qKPZ universality class. This could

be helpful for experiments and is summarized in Appendix B.
This technique is mostly limited by computer resources.

G. The universal amplitude ratio A

An important question is whether qKPZ is the proper large-
distance description of TL92, anharmonic depinning, and it-
self. To ensure this the properly renormalized non-linearity �
needs to flow to a fixed point. This is achieved by defining the
universal amplitude ratio A as

A :=
�(0)

|�0(0+)|
�

c
. (81)

The idea behind this construction is that if both � and c are
relevant, then

� [ru(x, t)]2 ⇠ cr2u(x, t) =) �

c
⇠ 1

u
(82)

On the other hand �(u) ⇠ u�0(u); taking the limit of
u ! 0 there allows to define the dimensionless quantity A
in Eq. (81). As a consequence, if the qKPZ equation is the
effective field theory in the limit of m ! 0, then the ratio A
needs to converge against the universal limit set by the qKPZ
field theory. That this is indeed the case can be seen on Fig. 15.
In the two models simulated, the amplitude ratio converges to
the same value,

Ad=1 = 1.10(2). (83)

VI. CONCLUSION

We showed through theoretical arguments and numerical
checks, that anharmonic depinning, qKPZ and the cellular au-
tomaton TL92 are in the same universality class, the qKPZ
universality class. We then elucidated the scaling relations for
driving through a parabolic confining potential. This allowed
us to understand statics and dynamics of our system. Finally
we developed an algorithm to measure the renormalized (ef-
fective) coefficients of the continuity equation. This will be
useful to constrain, and finally construct [44] the field theory
presented in a sequel of this work.

We believe that our technique to extract the effective cou-
pling constants by measuring the static response of the system
under spatially modulated perturbations may yield important
information in other systems that lack a proper field theoretic
description. We started to extend it to the KPZ equation itself.
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.
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We thank Juan Bonachela and Miguel Munoz for stimulat-
ing discussions and collaboration on the numerical part of this
project, published in [34].
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The anomalous dimension  c defined in Eq. (10) reads

 c = ��̃�̃0(0+)� d� 1

3
�̃2�̃(0). (55)

Using Eq. (14), we find

⇣m
⇣

= 1 +
1

2


��̃�̃0 �0+

�
� d� 1

3
�̃2�̃(0)

�
. (56)

Eq. (51) is still cumbersome to solve. Reinjecting Eq. (56),
we obtain at the fixed point

0 =

✓
"+

d

2


�̃�̃0 �0+

�
+

d� 1

3
�̃2�̃(0)

�
� 2⇣m

◆
�̃(u)

+u⇣m�̃0(u) +
d(d+ 2)

12
�̃2�̃(u)2

��̃0(u)2 � �̃00(u)
⇥
�̃(u)� �̃(0)

⇤
. (57)

The anomalous contribution  ⌘ reads

 ⌘ = �

d

4
�̃�̃0 �0+

�
+ �̃00 �0+

��
. (58)

Using Eq. (16) this yields

z =
⇣

⇣m


2� d

4
�̃�̃0 �0+

�
� �̃00 �0+

��
. (59)

We note that for d ! 0 the contribution of �̃ in equation (57)
disappears, thus we recover the qEW fixed point. This is not
the case in the massless scheme [33]. Increasing d we expect
the qKPZ fixed point to smoothly move away from the qEW
one. In Figure 12 we show that in dimension d = 1 the shape
of the measured �(w) for qEW and qKPZ are close, even
though their amplitudes may be rather different. We take this
as an encouraging sign to construct the FRG fixed point for
qKPZ. This is the task of section III E. Before doing so, we
derive constraints to be satisfied by the fixed point.

D. Necessary conditions for a fixed point, and bounds

1. Disorder relevant

In order to find a fixed point, we now assume (as in qEW)
that the disorder is relevant, thus 4 � d ⇣m⇣ � 2⇣m > 0. This
is satisfied in d = 1, but only marginally, see table I. There
one finds 4� d ⇣m⇣ � 2⇣m = 0.253859. Maybe not surprising,
since in d = 0 (qEW) one gets 4 � 2⇣m = 4 � 2 ⇥ 2� ⇡ 0.
In d = 1 qEW has 4� 1� 2⇥ 5/4 = 0.5.

Taking the limit of u ! 0 in Eq. (57), we obtain a soft
bound at 1-loop order,

|�̃0(0+)| >
r

d(d+ 2)

12
�̃�̃(0). (60)

When violated, the rescaling term becomes negative, and we
expect the effective disorder to disappear at large scales. Us-
ing the definition of the universal amplitude A in Eq. (31), we

ζm/ϵ

λ


ζm

ζk
-1

/4

Δ

''(0)

dimΔ/ϵ
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FIG. 8. In d = 1: The 1-loop contributions ⇣m/", amplitude ratio
A and ⇣m/⇣ � 1 as a function of �̃. Setting d = 1 in the flow
equations. The orange shaded range is excluded by demanding that
� is relevant, the cyan line is the location of the fixed point for �̃.
The red dashed line is the bound on A from A�

c = Afc
c . (see section

III D 3)

can rewrite the bound (60) as1

A < A�
c =

s
12

d(d+ 2)
=

8
<

:

2 in d = 1
1.22 in d = 2
0.894 in d = 3

. (61)

2. ⇣m > ⇣

We further expect a positive contribution to the renormal-
ization of c. Demanding that  c > 0, Eq. (56) yields

�̃⇥

�̃0(0+) +

d� 1

3
�̃�̃(0)

�
< 0. (62)

This can be rewritten as

A < A c
c =

3

d� 1
. (63)

3. Positive pinning force

The last condition is that the critical force at depinning
needs to be negative (keeping us pinned), equivalent to a neg-
ative square bracket in Eq. (47). In terms of A, this results
in

A  Afc
c =

2

d
. (64)

We find that in 1  d  4 the strongest bound is Afc
c for the

critical force, followed by the one for �(w) and  c,

A < Afc
c  A�

c < A c
c . (65)

It would be interesting to continue this to 2-loop order.

1 Note that the definition (31) for A remains unchanged upon replacing all
quantities by their dimensionless analogue, noted with a tilde.

Solution in d = 1

λ̃c

needs to be positive
(disorder relevant)

 (critical force positive)𝒜 < 2

ζd=1
m = 0.86

ζd=1 = 0.69
zd=1 = 1.27

𝒜d=1 = 1.27

RG:

ζd=1
m = 1.05

ζd=1 = 0.63
zd=1 = 1.10(2)

𝒜d=1 = 1.10(2)

numerics:

qEW
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FIG. 12. (Left) Correlators in d = 1 from simulations of harmonic depinning (qEW) and anharmonic depinning (in the qKPZ universality
class), compared to the analytic solution of the flow equations. �(w) for anharmonic depinning decays slightly faster than the one for harmonic
depinning. The correlators are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference of the rescaled correlators measured or analytical.
We see that the qKPZ FRG one loop solution is around 3 time closer to the numerical simulation than qEW one-loop to his, highlighting the
efficiency of our procedure.

FIG. 13. (Left) Correlators in d = 2 from simulations of harmonic
depinning (qEW) and anharmonic depinning (qKPZ class), com-
pared to the solution of the FRG flow equations. The FRG solution is
much closer to anharmonic depinning than to qEW. The correlators
are rescaled such that �(0) = |�0(0+)| = 1. (Right) Difference
of the rescaled correlators measured and analytical. The agreement
between simulations and theory is of the same order of magnitude
for the two universality class, even if the qKPZ theory is much more
sophisticated.

d = 2, and d = 3, we constructed a consistent theory. The

crucial ingredient is a flow-equation for the KPZ non-linearity,
which is controlled in dimension d. Behind this feature lies
the observation that all field theories for qEW with SR or LR
elasticity, as well as qKPZ merge into a single theory in di-
mension d = 0. Our theory has predictive powers as long
as we have a sufficient knowledge of the qEW fixed point in
small dimensions, and we are not too far away from d = 0.
We derived several bounds, respected in low dimensions, but
violated in dimension d = 3; there we currently can only close
our scheme with an adhoc assumption.

We hope that our method of first measuring the effective
theory in a simulation, before attempting to build a field the-
ory, can serve in other contexts as well, as e.g. fully devel-
oped turbulence. Applying our approach to other growth ex-
periments in d = 2 for which no theory is available seems
promising. We hope it will also shed light on the problems in
the standard (thermal) KPZ equation in higher dimensions.

ACKNOWLEDGMENTS

We thank Juan Bonachela and Miguel Munoz for stimulat-
ing discussions and collaboration on the numerical part of this
project, published in [34].
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E. Solution of the flow equations

1. Scheme

How do we solve these coupled equations? The procedure
is adapted from the standard ansatz for qEW [31], explained
in detail in Ref. [1]:

(i) Use the normalization �̃(0) = ". In practice, this cor-
responds to setting " ! 1 and ⇣m ! ⇣m/" in Eq. (57),
and then solving the flow equations with �̃(0) ! 1 in
the code.

(ii) Solve the (such rescaled) flow equation (57) for 0 
�̃  2. The correct solution is the one for which �̃(w)
decays to zero at least exponentially fast: A power-law
decay, or an increase in w, is not permitted by the phys-
ical initial condition.

(iii) The critical �̃c that satisfies Eq. (54) in our scheme is

�̃c =

r
6

4� d

r
⇣m
"
. (66)

Given d, the first square root is a number; the second
one is the result from step (ii) above.

2. d = 1

The procedure and the values obtained for different �̃ are
shown for d = 1 in Fig. 8. We see that ⇣m/" slightly decreases
from its qEW value of ⇣qEW

m = 1/3. The ratio ⇣m/⇣ starts at
1 for �̃ = 0, and then grows. The disorder becomes irrelevant
for �̃ ⇡ 1.4. At the same time the bound (61) for A (marked
here as a red dashed line A/4 = 0.5) is violated. The critical
�c = 0.755203 respects all bounds in Eq. (65). It gives

⇣d=1
m = 0.8555, (67)
⇣d=1 = 0.6994, (68)
zd=1 = 1.2736, (69)
Ad=1 = 1.2781. (70)

This can be compared to their values for � = 0 (qEW), ⇣m =
⇣ = 1, and z = 4/3, and the numerically obtained values
⇣m = 1.052, ⇣ = 0.636, and z = 1.1. The values (67)-
(69) are pretty reasonable for 1-loop estimates: For qEW ⇣ in
d = 1 comes out 20% smaller (1 instead of 1.25); the same
reduction applies to our prediction for ⇣m in qKPZ. ⇣ is about
10% larger than the numerical value. Finally, while z is too
large, using the numerically known value for ⇣/⇣m with the
same 1-loop estimate would yield z = 0.942, smaller than the
measured value of z = 1.1. (Note that the prediction of z = 1
in [20] is invalidated by numerics [34].)

ζm/ϵ

λ


ζm

ζk
-1

/4

Δ

''(0)

dimΔ/ϵ
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FIG. 9. Same as Fig. 8 for d = 2. The lower red dashed line is the
bound on A from Afc

c , the upper one the bound from A�
c .

3. d = 2

Relevant quantities as a function of � are given on Fig. 9.
Evaluation at � = �c yields

⇣d=2
m = 0.6051, (71)
⇣d=2 = 0.4941, (72)
zd=2 = 1.4112, (73)
Ad=2 = 1.2479. (74)

These results violate the bound (64) on A for fc. Supposing
that this is an artifact of the 1-loop approximation, the next
bound to consider is the bound (61), asking that disorder is
relevant at the transition. This bound is only slightly violated.
We therefore hope that the values given in Eqs. (71)-(74) are
usable.

Our own numerical simulations [34] give ⇣m = 0.72(2),
⇣ = 0.51(2) for TL92???, and ⇣m = 0.61(2), ⇣ = 0.48(2)
for anharmonic depinning. We expect the latter to be more
reliable as there are less finite-size corrections. The agreement
is then excellent.

For comparison we note that 1-loop qEW gives ⇣m = ⇣ =
2/3, and z = 1.5556, while numerics gives ⇣ = ⇣m =
0.753(2) and z = 1.56(6).

4. d = 3

Relevant quantities as a function of � are given on Fig. 11.
At the non-trivial fixed point (66) for �, we find

⇣d=3
m

?
= 0.9799, (75)

⇣d=3 ?
= 0.6048, (76)

zd=3 ?
= 0.9777, (77)

Ad=3 ?
= 1.1394. (78)

These values violate all bounds, and thus need to be rejected.
There are four possible conclusions:

Solution in d = 2

ζd=2
m = 0.61

ζd=2 = 0.49

𝒜d=2 = 1.25

RG:
ζd=2

m = 0.61(2)
ζd=2 = 0.48(2)

numerics
(anh. dep):zd=2 = 1.41

disorder relevant

critical force positive
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Abstract. Domain walls in magnets, vortex lattices in superconductors, contact lines at
depinning, and many other systems can be modeled as an elastic system subject to quenched
disorder. The ensuing field theory posesses a well-controlled perturbative expansion around
its upper critical dimension. Contrary to standard field theory, the renormalization group
flow involves a function, the disorder correlator �(w), and is therefore termed the functional
renormalization group (FRG). �(w) is a physical observable, the auto-correlation function of
the center of mass of the elastic manifold. In this review, we give a pedagogical introduction
into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and
depinning (dynamics). Building on these techniques, avalanche observables are accessible:
distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various
equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string
driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge
density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings
between these systems requires specific techniques, which we develop, including modeling of
discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry
techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead
to directed percolation, and non-linear surface growth with additional KPZ terms. On the other
hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the
directed polymer for its steady state, or a single particle for its decay. Other topics covered are
the relation between functional RG and replica symmetry breaking, and random field magnets.
Emphasis is given to numerical and experimental tests of the theory.

Anisotropic depinning with its relation to directed percolation, explained in section 5.7.

VERSION 1.1.: PLEASE REPORT MISPRINTS OR MISSING REFERENCES TO THE AUTHOR

arXiv:2102.01215

Review

Rep. Prog. Phys. 85 (2022) 
086502 (133pp)

pedagogic 
introduction in 
basic sections! 



Conclusions

• much can be learned by measuring the effective long-
distance action (  theory/description)

• qEW (standard elastic theory) has non-trivial 
disorder correlator given by FRG

• imbibition (e.g. TL92), anharmonic depinning and 
qKPZ all belong to the same universality class: the 
effective long-wavelength theory is qKPZ

• you need to introduce a confining potential 
 to measure disorder correlations

 give up the Cole-Hopf transform 
 yields an RG fixed point

• a field theory can be build

=

m2[w − u(x, t)]
⇒
⇒


