



# The role of structural heterogeneity in avalanche statistics :

# Deformability bridges universality classes in numerical granular assemblies under deviatoric loading.

Jordi Baró, <sup>*a,b*</sup>,

Mehdi Pouragha<sup>b,c</sup>, Richard Wan<sup>b</sup>, and Jörn Davidsen<sup>b</sup>, Eduard Vives<sup>d</sup>

<sup>a</sup> Centre for Mathematical Research (CRM), Campus de Bellaterra, Barcelona, 08193, Spain.

<sup>b</sup> U. of Calgary, Calgary, AB, T2N 1N4, Canada.

<sup>c</sup> Carleton U., Ottawa, Ontario, Canada

<sup>d</sup> U. de Barcelona, 08028 Barcelona, Cat., Spain.



K. Daniels & R. Munroe What Makes Sand Soft?, The New York Times Nov 9, 2020



K. Daniels & R. Munroe What Makes Sand Soft?, The New York Times Nov 9, 2020

#### Mehdi Pouragha

#### **Civil Engineering Department, University of Calgary, Canada** Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada



# Jamming transition



### Stable Evolution Surface (SES)



- $Z \equiv$  average coord. number (*n. contacts*)
- $\Gamma \equiv$  rigidity ratio (*contact deformation*)
- $a_c \equiv \text{fabric anisotropy (cont. orientation)}$

[M. Pouragha & R Wan Granular Matter (2016)]

## Stable Evolution Surface (SES)



### Non-linear dynamics at SES



# Non-linear dynamics at SES



- Are these avalanches?
- Can we define states from SES instead of  $\{\sigma, T, \phi\}$  or  $\sigma(\epsilon)$ ?
- $\bullet \ SES \rightarrow avalanche \ statistics?$

# Summary:

- 1. Discrete Element (DEM) simulations.
- 2. Avalanche statistics.
- 3. Origin of Mean Field (MF) exponents.
- 4. Comparison with acoustic emission (a.e.).

Quasistatic driving of elastic ( $f_c = k_c \delta$ ) particles



Method by [K. Salerno, M. Robbins PRE 2013]







$$dU \qquad \left(=\frac{1}{2}\sum \frac{f_c}{k_c}df_c\right) +$$

 $(= dD_f + dD_d)$  (no heat)

$$lW_{\chi}$$
  $(=V\sigma_{\chi}d\epsilon_{\chi})$ 

+

+



Avalanches as point process:  $\mu(\epsilon_y, \sigma_y; T, K, \Delta \sigma_y, \Delta U, W_x)$ 

- Duration: T := time of first rebound in U(t)
- Stress drop:  $\Delta \sigma_y := \sigma_y(t_0) \sigma_y(t_0 + T)$
- Potential E. drop:  $\Delta U := U(t_0) U(t_0 + T)$

• Kinetic energy: 
$$K = E_K^{\max} - K_D$$

• Lateral work: 
$$W_x = \int_{t_0}^{t_0+T} V_0(1+\epsilon_v)\sigma_x \dot{\epsilon}_x dt$$

# Avalanche Sizes and Energies



Avalanche from vel. profile v(t):

• Size: 
$$S := \int_{t_0}^{t_0+T} v(t) dt$$

• Duration *T* starting at time  $t_0$ 

• Energy 
$$E := \int_{t_0}^{t_0+T} v^2(t) dt$$

• Energy peak  $E_m := v_{\max}^2(t) dt$ 

In terms of *internal* avalanche measures ...?

### Avalanche Sizes



### Avalanche Sizes

Elastic E. vs Dissipation



$$\Delta U \propto NZ^{-1}(1-\phi)^{-2}\sigma_x^2 \frac{\Delta\sigma_y}{\sigma_x}$$

• Prop. 
$$\Delta U \propto \Delta \sigma_y$$
:

$$\Delta U \propto N \sigma_x^{1.85(5)} \Delta \sigma_y / \sigma_x$$

• No prop. 
$$D \propto \Delta \sigma_y$$
:

$$D = \Delta U - W_x \nsim \Delta U$$

### Avalanche Sizes



$$\Delta U \propto N Z^{-1} (1-\phi)^{-2} \sigma_x^2 \frac{\Delta \sigma_y}{\sigma_x}$$

• Prop.  $\Delta U \propto \Delta \sigma_y$ :

$$\Delta U \propto N \sigma_x^{1.85(5)} \Delta \sigma_y / \sigma_x$$

• No prop.  $D \propto \Delta \sigma_y$ :

 $D = \Delta U - W_x \nsim \Delta U$ 

- Two pop. of avalanches in  $W_x$
- $W_x \propto \Delta U$  if expanding (< 0)



## Avalanche Energies



$$K \propto E := \int v^2(t) dt$$
 or  $E_m := v_{\max}^2(t) dt$ ?

• Low dissipation between  $t_0$  and T



# $K \propto E := \int v^2(t) dt$ or $E_m := v_{\max}^2(t) dt$ ?

• Low dissipation between  $t_0$  and T

• If 
$$v(t) \propto \dot{U} \Rightarrow \dot{v}^2(t) \propto \dot{U}^2$$



$$K \propto E := \int v^2(t) dt$$
 or  $E_m := v_{\max}^2(t) dt$  ?

• Low dissipation between  $t_0$  and T

• If 
$$v(t) \propto \dot{U} \Rightarrow \dot{v}^2(t) \propto \dot{U}^2$$
  
•  $K \propto \Delta(U^2) := \int_{t_0}^{t_0+T} \dot{U}^2 dt$ 

$$\Rightarrow K \propto E$$



• Stationary (exp. decay at long  $\Delta \epsilon$ )



- Stationary (exp. decay at long  $\Delta \epsilon$ )
- Regularity (missing short  $\Delta\epsilon)$



- Stationary (exp. decay at long  $\Delta \epsilon$ )
- Regularity (missing short  $\Delta \epsilon$ )
- Pseudo-gap from dynamic fields:

$$P(\Delta \epsilon) = \frac{1+\theta}{\langle \Delta \epsilon \rangle} \left( \frac{\Delta \epsilon}{\langle \Delta \epsilon \rangle} \right)^{\theta} e^{-\left( \frac{\Delta \epsilon}{\langle \Delta \epsilon \rangle} \right)^{\theta+1}}$$

 $Regularity \rightarrow \text{Time-predictability}.$ 

More persistent σ<sub>y</sub> (*rigidity* Γ) at avalanche **onset**.



Regularity  $\rightarrow$  Time-predictability.

- More persistent σ<sub>y</sub> (*rigidity* Γ) at avalanche **onset**.
- Minimum loading gap from last avalanche:

$$\Delta \epsilon_y \sim \Delta \sigma_y^{0.36}$$

● ⇒ SES is a stability limit, triggering avalanches.



#### Size & Energy dist. stationary at SES



#### Size & Energy dist. stationary at SES



Effective modulus  $\hat{E}_y := \Delta \sigma_y / \Delta \epsilon_y$  within the SES is non-stationary. *How*?

 $\rho_{\hat{E}_y, \text{ activity rate}} = 0.37 \quad \rho_{\hat{E}_y, \text{ inter-event reload in } \sigma_y} = 0.30 \quad \rho_{\hat{E}_y, \text{ avalanche size}} = 0.058$ (\*  $\Delta \epsilon_y = 0.005$ )





$$P(x)dx = x^{-\tau_x} \Phi_x(x/x^*)dx$$
$$x^*(N, \sigma_x, \dot{\epsilon_y}) = \tilde{x}^* N^{\gamma_N^x} \sigma_x^{\gamma_e^x} \dot{\epsilon}_y^{\gamma_e^x}$$

 $x^*$ 



$$P(x)dx = x^{-\tau_x} \Phi_x(x/x^*) dx$$
$$x^*(N, \sigma_x, \dot{\epsilon_y}) = \tilde{x}^* N^{\gamma_N^x} \sigma_x^{\gamma_\sigma^x} \dot{\epsilon_y}^{\gamma_e^x}$$





# Estimated exponents by Max. Lik.

| 2.2          | â        | $\epsilon(\hat{\kappa},\hat{\gamma}) \mapsto \epsilon_{m} = 4/3$ |          | $\frac{\sigma_x}{k_n} (\sim \Gamma)$ | #    | $\kappa$  | ε                                                   | $2 - \varsigma \nu z$ |
|--------------|----------|------------------------------------------------------------------|----------|--------------------------------------|------|-----------|-----------------------------------------------------|-----------------------|
| 2.0          | -Â 🖂     | $\kappa(\hat{\epsilon}\hat{\gamma}) \mapsto \kappa_m \neq 3/2$   |          | $10^{-4}$                            | 1684 | 1.62(10)  | 1.32(10)                                            | 1.95(5)               |
|              | ΪŦ       |                                                                  |          | " "                                  | 979  | 1.60(7)   | 1.34(5)                                             | 1.85(10)              |
| 1.8          |          |                                                                  | -        | " "                                  | 788  | 1.71(8)   | 1.33(6)                                             | 1.83(4)               |
| <b>H</b> 1 6 |          |                                                                  | _        | " "                                  | 130  | 1.77(17)  | 1.45(6)                                             | 1.85(15)              |
|              | <u>I</u> |                                                                  |          | " "                                  | 236  | 1.49(11)  | 1.36(4)                                             | 1.69(6)               |
| ਨੂੰ 1.4      |          | <b></b>                                                          | -        | " "                                  | 1215 | 1.46(6)   | 1.36(4)                                             | 1.71(5)               |
| 0            | ±22      | Ť.                                                               |          | $10^{-3}$                            | 396  | 1.41(8)   | 1.14(11)                                            | 1.65(8)               |
| 1.2          | - 1      | $\Phi$                                                           | ŦŦ       | " "                                  | 851  | 1.32(5)   | 1.14(6)                                             | 1.71(4)               |
| 1.0          | _        | -                                                                | ₫ [      | $10^{-2}$                            | 633  | 1.08(3)   | 1.02(8)                                             | 1.48(7)               |
| 0.0          |          | ±                                                                | T        | SMFT <sup>(1)</sup>                  |      | 1.5       | $1 + \frac{\kappa - 1}{2 - \varsigma \nu z} = 1.33$ | 1.5                   |
| 0.8          | $10^{5}$ | 10 <sup>6</sup>                                                  | $10^{7}$ | 2D EPM                               |      | 1.25-1.28 | ~1.2 [*]                                            | ${\sim}1.45~[*]$      |
|              | 10       | $\sigma_{\rm x}$                                                 | 10       |                                      |      |           | [*                                                  | ] [Budrikis et        |

# Results:

#### Avalanches at SES are scale-free.

# Within SES critical exponents depend (*at least*) on rigidity $\Gamma$ : *Stiff* particles $\rightarrow$ MF *Soft* particles $\rightarrow$ EPM

# Discussion:

Why mean field in granular and a.e.?



Random Field Ising (RFIM) [J. Sethna PRL (1993)]



Slip Mean Field Theory (SMFT) [K. Dahmen PRL (2009)]

Democratic Fiber Bundle Model (DFBM) [JB, J. Davidsen, PRE (2018)] **Avalanches** in **mean-field models**: E.g. RFIM:  $\mathcal{H}(\{S\}) = \sum_{i} S_i \left( J \sum_{\langle ij \rangle} S_j + H_{\text{ext.}} + \mathbf{h}_i \right) \qquad \sum_{\langle j,i \rangle} J_{j,i} S_j \to JM$ 

**≡ Random Thresolds (***shell model* [*Sethna PRL,* 1993] ). when **one** element  $h_1$  is activated:  $H_{\text{ext}}(t) + M \rightarrow H_{\text{ext}}(t) + M + 2J/N$ 





Random Field Ising (RFIM) [J. Sethna PRL (1993)]



Slip Mean Field Theory (SMFT) [K. Dahmen PRL (2009)]

Democratic Fiber Bundle Model (DFBM) [JB, J. Davidsen, PRE (2018)]

# Avalanches in mean-field models: E.g. RFIM: $\mathcal{H}(\{S\}) = \sum S_i \left( I \sum S_i + H_{\text{ext}} + \mathbf{h}_i \right) \qquad \sum I_{i:i}S_i \to IM$

$$\mathcal{L}(\{S\}) = \sum_{i} S_{i} \left( J \sum_{\langle ij \rangle} S_{j} + H_{\text{ext.}} + \mathbf{h}_{i} \right) \qquad \sum_{\langle j,i \rangle} J_{j,i} S_{j} \to J \mathcal{M}_{i}$$

**≡ Random Thresolds (***shell model* [*Sethna PRL,* 1993] ). when **one** element  $h_1$  is activated:  $H_{\text{ext}}(t) + M \rightarrow H_{\text{ext}}(t) + M + 2J/N$ 



- Avalanches grow as a **branching** process.
- For  $N \to \infty$ : **MF-avalanche size**  $\equiv$  **tree-size** in **Poisson G.W.**:

$$D(\Delta; n) = \frac{(n\Delta)^{\Delta - 1} \exp(-n\Delta)}{\Delta!} \sim \boxed{\Delta^{-3/2} \mathcal{D}(n\Delta)}$$



Avalanches in loopless trees: E.g. RFIM:

$$\mathcal{H}(\{S\}) = \sum_{i} S_{i} \left( J \sum_{\langle ij \rangle} S_{j} + H_{\text{ext.}} + \mathbf{h}_{i} \right) \qquad \sum_{\langle j,i \rangle} J_{j,i} S_{j} \quad ;j \text{ random}$$

- Avalanches grow as a **percolation** process.
- For  $N \to \infty$ : cluster size  $\approx$  tree-size in Binomial G.W.:

$$D(\Delta; n) \sim \Delta^{-3/2} \mathcal{D}(n\Delta)$$

• Similar in a BTW version: [HM Brker, P Grassberger, EPL (1995)] [P. Grassberger, EPL (2022)]

#### Structure of force chains in granular materials

short range vs. long-range



#### Nonlinear Force Propagation During Granular Impact

Abram H. Clark,<sup>1,\*</sup> Alec J. Petersen,<sup>1</sup> Lou Kondic,<sup>2</sup> and Robert P. Behringer<sup>1</sup>

#### Structure of force chains in **porous** materials



Hadrien Laubie,1.\* Farhang Radjai,2.3,† Roland Pellenq,1.2.4,‡ and Franz-Josef Ulm1.2.8





# $\downarrow$ $E \sim \int |\text{Signal}(t)|^2 dt$ $N \sim 10^4 \text{ pairs: } \{t_i, E_i\}$

[JB, et al., PRL (2013)]



$$E \sim \int |\text{Signal}(t)|^2 dt$$
  
 $N \sim 10^4 \text{ pairs: } \{t_i, E_i\}$ 

[JB, et al., PRL (2013)]





$$N \sim 10^4$$
 pairs:  $\{t_i, E_i\}$ 

 $E \sim$ 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

#### [JB, et al., PRL (2013)]

 $\rho(E)dE = \frac{E^{-\varepsilon}}{\zeta(\varepsilon)}dE$ 







Stationary E : 
$$\mu(t, E) = \rho(E, t)\mu_t(t)$$
 with

Foreshocks preceding failure  $\mu(t) \approx (t - t_f)^m$ 

$$\rho(E)dE = \frac{E^{-\varepsilon}}{\zeta(\varepsilon)}dE$$

$$\downarrow E \sim \int |\text{Signal}(t)|^2 dt$$
$$N \sim 10^4 \text{ pairs: } \{t_i, E_i\}$$

[JB, et al., PRL (2013)] [JB, et al., PRL (2018)]

ibaro@crm.cat

Iordi Baró

@IBcritical

[JB & Davidsen, PRE (2018)]

10<sup>0</sup>





$$\downarrow E \sim \int |\text{Signal}(t)|^2 dt$$
$$N \sim 10^4 \text{ pairs: } \{t_i, E_i\}$$

[*JB*, et al., *PRL* (2013)] [*JB*, et al., PRL (2018)]

10<sup>-2</sup>  $10^{6}$ 3ks<t<6ks  $< E_{AE} >$ 36ks<t<9ks 9ks<t<12ks  $10^{2}$ 12ks<t<15ks (also 10<sup>10</sup> 5ks<t<18ks 10<sup>-6</sup> 18ks<t =1.39 $dE_{AE}/dt$ 10 10<sup>-8</sup> 10 10<sup>-10</sup>  $10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8}$  $10^{-1}$   $10^{-2}$   $10^{-3}$   $10^{-4}$   $10^{-5}$   $10^{-6}$  $f_k = 1 - P/P_c^{\ k}$ E(aJ) V32 G26 SR2 slip MF fracture MF

all

0s<t<3ks

 $10^{8}$ (aJ)

|                   |           |           |          | 1   |     |
|-------------------|-----------|-----------|----------|-----|-----|
| $\gamma *$        | 3.0 (4)   | 3.4 (4)   | 3.2 (4)  | 3   | 3   |
| ε                 | 1.40 (5)  | 1.40 (5)  | 1.50 (5) | 4/3 | 4/3 |
| т                 | 1.02 (13) | 1.11 (20) | 0.99 (8) | 1   | 1/2 |
| $\varsigma \nu z$ | 0.50 (6)  | 0.45 (6)  | 0.48 (5) | 1/2 | 1/2 |
| $\kappa$          | 1.60 (8)  | 1.62 (8)  | 1.76 (8) | 3/2 | 3/2 |

@IBcritical

k=5 🝽

k=2 ⊮ k=4 ⊮





 $\downarrow$   $E \sim \int |\text{Signal}(t)|^2 dt$   $N \sim 10^4 \text{ pairs: } \{t_i, E_i\}$ 

[JB, et al., PRL (2013)] [JB, et al., PRL (2018)]

Jordi Baró jbaro@crm.cat @JBcritical



- Internal measures and theory:  $\Delta U \propto S$  ,  $K \propto E$  .
- SES behaves as an state-attractor with SOC properties.
- Non-universal exponents depend on rigidity ( $\Gamma \sim \sigma_x$ )



- Internal measures and theory:  $\Delta U \propto S$  ,  $K \propto E$  .
- SES behaves as an state-attractor with SOC properties.
- Non-universal exponents depend on rigidity ( $\Gamma \sim \sigma_x$ )
- Mean field exponents might appear due to structural heterogeneity
- The same explanation might apply to a.e. experiments on brittle porous materials (SiO<sub>2</sub> glasses)



- Internal measures and theory:  $\Delta U \propto S$  ,  $K \propto E$  .
- SES behaves as an state-attractor with SOC properties.
- Non-universal exponents depend on rigidity ( $\Gamma \sim \sigma_x$ )
- Mean field exponents might appear due to structural heterogeneity
- The same explanation might apply to a.e. experiments on brittle porous materials (SiO<sub>2</sub> glasses)

#### Ongoing research:

- Understand behavior expanding, contracting avalanches.
- MF  $\leftrightarrow$  EPM: Smooth transition? sharp transition? finite size effect (only exact at  $\Gamma = 0$ )? *Hidden universal function? New finite size scaling techniques?*
- Determine avalanche properties in terms of SES (*different from classic avalanche statistics*). *Relation between avalanches at SES and potential energy landscape and kinematics.*
- Archaeology: Can we translate legacy results to SES? *Additional effects of friction, kinematics, rate, temperature, etc..*



#### Mark O. Robbins (1956-2020)

• J. Baró, M. Pouragha, R. Wan, J. Davidsen Quasistatic kinetic avalanches and self-organized criticality in deviatorically loaded granular media PRE 104 (2), 024901 (2021)

Stable Evolution Surface:

• M. Pouragha and R. Wan, Granular Matter 18, 38 (2016).

Experiments a.e.:

- J. Baró, et al., Phys. Rev. Lett. 110, 088702 (2013).
- J. Baró, et al., Phys. Rev. Lett. 120, 245501 (2018).
- P.O. Castillo-Villa, et al., J. Phys.: Cond. Matt. 25 292202 (2013)

solutions Mean Field stats .:

- J.P. Sethna, et al., PRL 70, 3347 (1993)
- K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).
- J. Baró and J. Davidsen, Phys. Rev. E 97, 033002 (2018).

Mean Field from loopless tree:

- H.M. Brker, P. Grassberger, EPL 30 319 (1995)
- P. Grassberger, EPL, 136 26002 (2022)

Force chains in granular and porous mat .:

- A.H. Clark A.J. Petersen, L. Kondic, R.P. Behringer, PRL 114 144502 (2015)
- H. Laubie, F. Radjai, R. Pellenq, F.J.Ulm, PRL 119 075501 (2017)

Amorphous & LJ:

- K.M. Salerno, M.O. Robbins PRE, 88, 062206 (2013).
- Z. Budrikis, et al., Nat. Commun. 8, 15928 (2017).

- Internal measures and theory:  $\Delta U \propto S$  ,  $K \propto E$  .
- SES behaves as an state-attractor with SOC properties.
- Non-universal exponents depend on rigidity ( $\Gamma \sim \sigma_x$ )
- Mean field exponents might appear due to structural heterogeneity
- The same explanation might apply to a.e. experiments on brittle porous materials (SiO<sub>2</sub> glasses)

#### Ongoing research:

- Understand behavior expanding, contracting avalanches.
- MF  $\leftrightarrow$  EPM: Smooth transition? sharp transition? finite size effect (only exact at  $\Gamma = 0$ )? Hidden universal function? New finite size scaling techniques?
- Determine avalanche properties in terms of SES (*different from classic avalanche statistics*). *Relation between avalanches at SES and potential energy landscape and kinematics.*
- Archaeology: Can we translate legacy results to SES? *Additional effects of friction, kinematics, rate, temperature, etc..*



← More on SES: talk by M. Pouragha: https://youtu.be/JclTxuJspQk?t=10650 (2:57:30 s )

$$\kappa = 2 - \frac{\theta}{\theta + 1} \frac{d}{d_f}$$

$$\langle T|S \rangle \sim S^{\varsigma \nu z} \quad \text{where} \quad \varsigma \nu z = 1/2 \langle E|S \rangle \sim S^{2-\varsigma \nu z} \quad \text{where} \quad 2 - \varsigma \nu z = 3/2$$

$$\langle E_m|S \rangle \sim S^{2\varsigma \rho} \quad \text{where} \quad 2\varsigma \rho = 1 .$$

$$(1)$$

$$P(S) \sim S^{-\kappa} \qquad \text{where} \quad \kappa = 3/2$$

$$P(E) \sim E^{-1 - \frac{\kappa - 1}{2 - \varsigma \nu z}} \qquad \text{where} \quad 1 + \frac{\kappa - 1}{2 - \varsigma \nu z} = 4/3 \qquad (2)$$

$$P(E_m) \sim E_m^{-\frac{1+\mu}{2}} \qquad \text{where} \quad \frac{1 + \mu}{2} = 3/2 .$$

$$P(\Delta U) \, d\Delta U = \Delta U^{-\kappa} \, \Phi_{\Delta U}(\Delta U / \Delta U^*) \, d\Delta U,$$
$$P(K) \, dK = K^{-\varepsilon} \, \Phi_K(K/K^*) \, dK,$$

(3)

|                     | stiffness | #    | κ         | ε                                                   | $\gamma$                    |
|---------------------|-----------|------|-----------|-----------------------------------------------------|-----------------------------|
| D2kSc5              | (stiff)   | 1684 | 1.62(10)  | 1.32(10)                                            | 1.95(5)                     |
| L5kSc5              | ,, ,,     | 979  | 1.60(7)   | 1.34(5)                                             | 1.85(10)                    |
| D5kSc5              | ,, ,,     | 788  | 1.71(8)   | 1.33(6)                                             | 1.83(4)                     |
| L20kSc5             | ,, ,,     | 130  | 1.77(17)  | 1.45(6)                                             | 1.85(15)                    |
| D20kSc5             | ,, ,,     | 236  | 1.49(11)  | 1.36(4)                                             | 1.69(6)                     |
| D5kFc5              | ,, ,,     | 1215 | 1.46(6)   | 1.36(4)                                             | 1.71(5)                     |
| D5kSc6              |           | 396  | 1.41(8)   | 1.14(11)                                            | 1.65(8)                     |
| D5kFc6              |           | 851  | 1.32(5)   | 1.14(6)                                             | 1.71(4)                     |
| D5kFc7              | (soft)    | 633  | 1.08(3)   | 1.02(8)                                             | 1.48(7)                     |
| SMFT <sup>(1)</sup> |           |      | 1.5       | $1 + \frac{\kappa - 1}{2 - \varsigma \nu z} = 1.33$ | $2 - \varsigma \nu z = 1.5$ |
| 2D EPM              |           |      | 1.25-1.28 | ~1.2 [?]                                            | ~1.45[?]                    |

| name    | num. of<br>particles<br>N | confining<br>pressure<br>$\sigma_x(N/m)$ | driving<br>rate<br>$\dot{\epsilon}_y(\times 10^{-9}s^{-1})$ | initial porosity $\phi_0$ |
|---------|---------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------|
| D20kSc5 | 19520                     | $10^{5}$                                 | 2.3                                                         | 0.156                     |
| L20kSc5 | 19353                     | $10^{5}$                                 | 2.3                                                         | 0.190                     |
| D5kSc5  | 6374                      | $10^{5}$                                 | 2.4                                                         | 0.159                     |
| L5kSc5  | 5504                      | $10^{5}$                                 | 2.4                                                         | 0.192                     |
| D2kSc5  | 1593                      | $10^{5}$                                 | 1.3                                                         | 0.165                     |
| D5kSc6  | 6374                      | $10^{6}$                                 | 2.4                                                         | 0.154                     |
| D5kFc5  | 6374                      | $10^{5}$                                 | 7.0                                                         | 0.159                     |
| D5kFc7  | 6374                      | $10^{6}$                                 | 7.0                                                         | 0.154                     |
| D5kFc7  | 6374                      | 10 <sup>7</sup>                          | 7.0                                                         | 0.120                     |

| $\sigma_x$ | $\sigma_x/k_n$ | $\approx$ porosity |
|------------|----------------|--------------------|
| 1e5        | 1e-4           | 0.1685             |
| 1e6        | 1e-3           | 0.1644             |
| 1e7        | 1e-2           | 0.1233             |

#### Figures PRL2018

Magnitude Relations:

$$\int D_{AE} = t - t_i | V < V_{th}$$

• AE magn. 
$$\begin{cases} A_{AE} = \max(V(t)) \end{cases}$$

$$\begin{bmatrix} E_{AE} = \int_{t_i}^{t_i + D_{AE}} |V(t)|^2 dt \end{bmatrix}$$

• Signal Hypothesis:

$$V(t) = G \int_{-\infty}^{t} v(t) e^{i\omega_0 t - \frac{t-t'}{\tau}} dt'$$

• Parabolic shape:

$$\tilde{v}(t/T) = 4\left(t/T - \left(t/T\right)^2\right)$$



• Acceleration and energy exponent before failure:



2.0G26 h c V32 1.8 1.6 ω 1.4 1.2 1.0  $10^{8}$ (a)k=3 ⊮ ю k=5 ю k=5 k=1 н k=3k=3ю k=1k=2 ⊮ k=4 ⊮  $10^{6}$ k=2 ⊮ k=4 ⊨ k=6 k=2 ⊮ k=4 ⊮  $\overset{10}{\stackrel{}_{}_{}}^{\times} \overset{10}{10^4} \\ \overset{10}{\stackrel{}_{}}^{\times} \overset{10^4}{10^2}$  $10^{2}$ g)h)  $m^* = 1.13(50)$  $\frac{dE_{AE}}{dE} / \frac{dE_{AE}}{dt} / \frac{dE$  $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ f_k^* = P/P_c^{\ k} - I$  $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$  $f_k^* = P/P_c^{\ k} \cdot I$  $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$  $f_k^* = P/P_c^{\ k} - 1$ 

• Deceleration and energy exponent after failure:



|                | V32         | G26         | SR2           | slip MF       | fracture MF     |
|----------------|-------------|-------------|---------------|---------------|-----------------|
| $\gamma$       | 3.0 (4)     | 3.4 (4)     | 3.2 (4)       | 3             | 3               |
| ε              | 1.40 (5)    | 1.40 (5)    | 1.50 (5)      | 4/3           | 4/3             |
| т              | 1.02 (13)   | 1.11 (20)   | 0.99 (8)      | $1^{a} 2^{b}$ | $1/2^{a} 1^{b}$ |
| $\sigma \nu z$ | 0.50 (6)    | 0.45 (6)    | 0.48 (5)      | 1/2           | 1/2             |
| $\kappa$       | 1.60 (8)    | 1.62 (8)    | 1.76 (8)      | 3/2           | 3/2             |
| $\sigma^{a}$   | 0.40 (9)    | 0.34 (9)    | 0.24 (8)      | 1/2           | 1               |
| $\sigma^b$     | 0.88 (12)   | 0.80 (16)   | 0.76 (7)      | 1/2           | 1               |
| $\beta^{a}$    | $3.7\pm0.8$ | $4.6\pm1.2$ | $6.3 \pm 2.1$ | 3             | 3/2             |
| $\beta^b$      | 1.67 (24)   | 1.83 (37)   | 2.00 (25)     | 3             | 3/2             |

**Table:** First three top rows: fitted exponents in experimental data, compared to the MF exponents for slip and fracture MF models. Bottom rows: fundamental exponents estimated from MF theory. Superscripts *a* and *b* denote two different interpretations of ASR in terms of MF theory.

|              | area       | height        | driving rate  | Th   | Ν     |
|--------------|------------|---------------|---------------|------|-------|
|              | $A (mm^2)$ | <i>h</i> (mm) | dP/dt (kPa/s) | (dB) |       |
| Vycor (V32)  | 17.0       | 5.65          | 5.7           | 23   | 34138 |
| Gelsil (G26) | 46.7       | 6.2           | 0.7           | 26   | 5412  |
| Sands. (SR2) | 17.0       | 4.3           | 2.4           | 23   | 27271 |

**Table:** Sample details: crossectional area A; height h; compression rate dP/dt; number N of recorded signals above threshold Th.



when one element is activated:  $\sigma_l \rightarrow \sigma_l + \Delta \sigma_l$ (increment  $\Delta \sigma_l \approx \text{constant}$ )



 $\land \land$ 



when one element is activated:  $\sigma_l \rightarrow \sigma_l + \Delta \sigma_l$ (increment  $\Delta \sigma_l \approx \text{constant}$ )





when one element is activated:  $\sigma_l \rightarrow \sigma_l + \Delta \sigma_l$ (increment  $\Delta \sigma_l \approx \text{constant}$ )



... mean-field ... ... exponent 3/2 ?

• The MF avalanche grows as a **branching** process.



when one element is activated:  $\sigma_l \rightarrow \sigma_l + \Delta \sigma_l$ (increment  $\Delta \sigma_l \approx \text{constant}$ )



... mean-field ... ... exponent 3/2 ?

• The MF avalanche grows as a **branching** process.



when one element is activated:  $\sigma_l \rightarrow \sigma_l + \Delta \sigma_l$ (increment  $\Delta \sigma_l \approx \text{constant}$ )



- The MF avalanche grows as a **branching** process.
- All elements can trigger a number of elements with the same **Poisson** distribution:



when one element is activated:  $\sigma_1 \rightarrow \sigma_1 + \Delta \sigma_1$ (increment  $\Delta \sigma_l \approx \text{constant}$ )



... mean-field ... ... exponent 3/2



- The MF avalanche grows as a **branching** process.
- All elements can trigger a number of elements with the same **Poisson** distribution:
- MF-avalanche size  $\equiv$  tree-size in Poisson Galton-Watson:

 $D(\Lambda, M$ 

$$(n\Delta)^{\Delta-1}\exp(-n\Delta)$$



@IBcritical