GREMAN matériaux microélectronique acoustique nanotechnologies

Avalanches in ferroelectric and ferroelastic materials

Guillaume F. Nataf

Debrecen - 01/09/2022

Laboratory GREMAN

50 researchers10 postdocs30 PhD students

A long-term collaboration

Blai Casals (IC2N, Barcelona)

Ekhard Salje (University of Cambridge)

- Casals *et al.* Avalanche criticality during ferroelectric/ferroelastic switching. *Nature Communications* (2021)
- Nataf *et al.* Avalanches in ferroelectric, ferroelastic and coelastic materials: phase transition, domain switching and propagation. *Ferroelectrics* (2020)
- Casals *et al.* Avalanches from charged domain wall motion in BaTiO₃ during ferroelectric switching. *APL Materials* (2020)
- Nataf *et al.* Predicting failure: acoustic emission of berlinite under compression. *Journal of Physics: Condensed Matter* (2014)
- Nataf *et al.* Avalanches in compressed porous SiO₂-based materials. *Physical Review E* (2014)

- 1. Introduction on ferroelectric materials and domain walls
- 2. How domain walls move in response to an applied electric-field?
- 3. How domain walls relax after an applied shear stress?

Ferroelectric materials

Salje, Nataf et al., Phys. Rev. B. 87 (2013). Pesquera, Casals, Thompson, Nataf et al., APL Mater. 7 (2019).

Profiles of ferroelectric domain walls

Image of a ferroelectric domain wall

Scanning transmission electron microscopy on a 180° Ising domain wall in LiNbO₃

Domain-wall engineering: electric conduction in ferroelectrics

Nataf *et al.* Nat. Rev. Phys. **2** (2020). Meier, Selbach, Nat. Rev. Mater. (2021). Sharma *et al.*, Materials **12**, 2927 (2019).

Domain-wall engineering: electric conduction in ferroelectrics

Nataf et al. Nat. Rev. Phys. 2 (2020). Meier, Selbach, Nat. Rev. Mater. (2021). Sharma et al., Materials 12, 2927 (2019).

Domain-wall engineering: polarization in non-polar materials

Domain-wall engineering: polarization in non-polar materials

Q

Nataf *et al.* Nat. Rev. Phys. **2** (2020). Cherifi-Hertel *et al.* J. Appl. Phys. **129** (2021).

Domain-wall engineering: thermal conduction

G R E M A N El Kamily,

Domain-wall engineering in ferroelectric and ferroelastic materials

Domain walls are 2D topological defects that can move in response to an electric-field or an applied pressure. When this spatial confinement is combined with observations of emergent functional properties, it becomes clear that domain walls represent new and exciting objects in matter.

1. Introduction on ferroelectric materials and domain walls

- 2. How domain walls move in response to an applied electric-field?
- 3. How domain walls relax after an applied shear stress?

Acoustic emissions under an applied voltage

« Touch » domain walls

Displacement current (I) under an applied voltage (V)

$$E_{jerk} = (dI/dV)^2$$

« Watch » domain walls

Optical microscopy under an applied voltage

Measuring avalanches in ferroelectrics

18

Moving domain walls in $0.68[Pb(Mg_{1/3}Nb_{2/3})O_3]-0.32[PbTiO_3]$

- domain walls
- junctions between domain walls

Switched regions

Difference between consecutive images to extract regions that switched

Switched regions in PMN-PT

Regions that switched are close to junctions between domain walls

Switched regions: power law distributions

Criticality at the coercive field

Casals, Nataf, Salje, Nat. Commun. 12 (2021).

GREMAN

Ferroelectric/ferroelastic switching progresses via **avalanches**

A fine structure appears during switching:

→ At the **coercive field**, area and energy exponents correspond to unrelaxed mean-field values ($\epsilon = 1.3$, $\tau = 1.7$), while the **fractality** is maximum with $H_D = 1.8$

 \rightarrow Elsewhere, exponents near the field integrated mean-field values with $\epsilon = 1.6$ and τ ~2.2

→ The coercive field acts as a critical point

Tuning criticality with dislocations in BaTiO₃

Collaboration with Jürgen Rödel (Darmstadt)

GREMA

Tuning criticality with dislocations in BaTiO₃

Collaboration with Jürgen Rödel (Darmstadt)

Tuning criticality with dislocations in BaTiO₃

Dislocations are decreasing the energy exponent?

28

- 1. Introduction on ferroelectric materials and domain walls
- 2. How domain walls move in response to an applied electric-field?
- 3. How domain walls relax after an applied shear stress?

LaAlO₃: a prototypical system for ferroelastic avalanches

Applying shear stress to LaAlO₃

Collaboration with Nick Barret (Saclay)

GREMAN

- 1- Apply to $LaAlO_3$ single crystal a shear force
- 2- Keep the pressure for few seconds
- 3- Release the pressure
- 4- Take 1 image per second

31

Entering a creep regime

The number of switched regions decreases rapidly

A simple power-law analysis

A power law with a cut-off

34

A power law with a cut-off

 $N \sim E^{-\varepsilon} \exp(-E^{\alpha})$

fixed ε = 1.33

GREMAN

When releasing the shear stress applied on a ferroelastic, after a few seconds, domain walls response moves away from a power-law behaviour and exhibits a stronger exponential damping (cut-off).

Acknowledgements

GREMAN Mehdi El Kamily, Lucile Féger, Patrice Limelette

LUXEMBOURG Mael Guennou, Jens Kreisel

DARMSTADT Fangping Zhuo, Jürgen Rödel

BARCELONA Blai Casals, David Pesquera

CAMBRIDGE Ekhard Salje

INSA

Questions?

