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Why would the brain be critical ?

Pros:
Diverging fluctuations —
High sensitivity to stimuli

Diverging correlation functions —
Optimal transmission and
storage of information | o

Maximal information processing and computational performance

Cons: Tuning to critical point is needed
Danger of super-critical (epileptic) behavior

Self-organization to criticality (SOC) ?
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Open Connectome Large Human graphs

Diffusion and structural MRI images with
1 mm3 voxel resolution :

105—-106 nodes
Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas)

Lower levels: Deterministic tractography: Fiber
Assignment by Continuous Trackmg (FACT)
algorithm

Map : voxel — vertex (~ 107)

fiber —» edge (~ 10 10)

+ noise reduction — graph

undirected, weighted
Graph dimension: d < 4

MG, GO Sci.Rep. 2016
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FIG. 2. Avalanche survival distribution of the relative thresh-
old model with K =0.25, for v=095 and A =038,081,
0.82,0.83,0.835.0.84,0.845.,0.85,0.86,0.87.0.9.0.95.1 (bottom to
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(top to bottom curves). Griffiths effect manifests by slopes reaching
a constant value as 1/r — 0.
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FIG. 4. Survival probability of the activity at different branching
rates in the K = 2 threshold model with excitatory links. From top to
bottom curves: & =0.33,0.325,0.322,0.32(/ =5and [ = 6),0.315.
Dashed lines show PL fits for the tails: s > 10* at A = 0.315, 0.32,
0.322, 0.33.
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Explanation for the Griffiths Phase
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Hubs or cores in modules remain active which decay as: p ~exp(—1 /1)
S AP, TR lf-._]

Random, inter-module connections with single links ~ K=2
— quasi unconnected, finite rare regions
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Conclusions

- Griffiths phase (GP) can occur in high dimensional systems due to fragmentation of the
activity propagation caused by the modules

- Nonuniversal PLs suggest that Griffiths eflects are present
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« Discontinuous jump in g, metastability and GP: Hybrid Phase Transition!
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« Discontinuous jump in g, metastability and GP: Hybrid Phase Transition!

May apgl}s; to other heretogeneous, excitable systems
G. O. & B. 5. PHYSICAL REVIEW RESEARCH 3, 013106 (2021)



Thank you for your attention !
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Inhibitory links (10-30%) generate Griffiths Phase
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FIG. 5. Avalanche survival distribution of the relative threshold
model with 309 inhibitory links at K = 0.1, for A =095 and v =
0.4,045,049,0.5,0.51,0.52,0.550.57,0.7 (bottom to lop curves).
Inset: Local slopes of the same curves in opposite order.



Inhibitory weights in the local homeostasis

Inhibitory links (10-30%) generate Griffiths Phase
with non-universal power laws and ultra-slow dynamics at 4.

(]

10 F T T L T T
F 1.0 .
-
z N el
(2] _.-":_._-'-_r
| ws| N
JD i :_ _ .____-."' __-":_/'Ju_ .
: e -:_:_ - ]
0.0 \-“\._‘ﬁ I{. Luas
e 1D 10 1/t
,.: . ..._i--""-..___ T —— ——
207 F 0.4
(=19 0.45 . ‘-._‘ TTm—
0.48 AN T T
0.49
0.50 \\‘\.\
-3 0.51 T
10 3 0.52 T
.55
0.57
0.7
10" 1 1 1

FIG. 5. Avalanche survival distribution of the relative threshold
model with 30% inhibitory links at K = 0.1, for . =0.95 and v =
0.4,045,049,0.5,0.51,0.52,0.550.57,0.7 (bottom to lop curves).

Inset: Local slopes of the same curves in opposite order.

T ~13-2

ﬁn__ — T T T T
e
R o055
JD B 1.4l E
...... .
205
145
-——-5

+0.49
EE]

—_——-5

w’ F | ]
—1 _‘: il 1 e
> 10t 107 10 +-
1/t
JD-H 5 1 I ||||: |I |4
10 10 107 10 10 10

FIG. 6. Avalanche size distribution of the relative threshold
model with 304 inhibitory links at & = 0.1, v =095, and & =
0.49.0.5,0.55. Dashed lines: PL fits. Inset: Effective n expo-
nent for v = 0.95 and A = 0.49,0.5,0.51,0.51,0.55 (bottom to top
CUrves).
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K increases to 1.9(1), but n = 0.6(1) remains the same, and below it:
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K increases to 1.9(1), but n = 0.6(1) remains the same, and below it:

Duration scalin eﬁ)onent within experimental range: 1.5<7 <24
J.M. Palva et al PNAS 110 (2013) 3585
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FIG. 5. Avalanche size distributions at different A branching
rates, denoted by the symbols, in the presence of inhibitory links in
HMN2d with [ =3, 6 levels. From top to bottom curves: A =0.55,
0.54, 0.53 (I =5 green and [ = 6 cyan), 0.52, 0.51, 050 (I =5
triangle and / = 6 diamond). Dashed lines show power-law fits
for the tails of A =0.55,0.51 cases, for t = 1000. Inset: over-
lapping avalanches case for half-filled initial condition at A =
0.51,0.515, 0.52, 0.525 (bottom to top symbols).
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rates, denoted by the symbols, in the presence of inhibitory links in
HMN2d with [ =3, 6 levels. From top to bottom curves: A =0.55,
0.54, 0.53 (I =5 green and [ = 6 cyan), 0.52, 0.51, 050 (I =5
triangle and / = 6 diamond). Dashed lines show power-law fits
for the tails of A =0.55,0.51 cases, for t = 1000. Inset: over-
lapping avalanches case for half-filled initial condition at A =
0.51,0.515, 0.52, 0.525 (bottom to top symbols).
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FIG. 6. Survival probability of the activity at different branching
rates and v = 1 — A for the K = 2 threshold model with levels: [ =
5, 6 for the case with 20% of inhibitory links. From bottom to top
symbols: A = 0.5, 0.505, 0.510, 0.515, 0.520 (/ = 5 purple cross and
[ = 6 blue circle). 0.525 (I = 5 brown cross and [ = 6 brown circle).
Dashed lines are PL fits for the tails of A = 0.505. 0.52 curves.
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FIG. 7. Avalanche size distributions at different A branching
rates, denoted by the symbols, in case of the refractory model, in the
presence of inhibitory links in HMN2ds with [ = 5, 6 levels. From
bottom to top symbols: A = 0.39, 0.40 ([ = 5 left triangle and [ = 6
up triangle), 0.41, 0.42, 0.43. Dashed lines are PL fits for the tails
of L =0.39,0.4,0.41, 0.43 cases for r = 1000. The inset shows the
oscillatory behavior of p(t) of a single run for At = 10.
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FIG. 7. Avalanche size distributions at different A branching
rates, denoted by the symbols, in case of the refractory model, in the
presence of inhibitory links in HMN2ds with [ = 5, 6 levels. From
bottom to top symbols: & = 0.39, 0.40 ([ = 5 left triangle and | = 6
up triangle), 0.41, 0.42, 0.43. Dashed lines are PL fits for the tails
of L =0.39,0.4,0.41, 0.43 cases for r = 1000. The inset shows the

oscillatory behavior of p(t) of a single run for At = 10.

FIG. 8. Survival probability of the activity at different branching
rates A for the levels | = 5, 6, in the case of the inhibitory-refractory
model. From bottom to top symbols: 4 =0.40, 0.41 (/ =5 and
[ =6),042 (I =5 light green and | = 6 dark green), 0.43. Dashed
lines show PL fits for t = 1000 for the » = 0.4, 0.41, 0.43 cases.
Inset: p(t) at A =1, [ =7 averaged over 10° realizations. Blue
boxes: excitatory: red diamonds: inhibitory. Black bullets: BES p(r)
results. Dashed lines are PL fits for the initial regions: 1 <t <
10) resulting in effective dimensions: der = 1.84(3) (excitatory),
dor = 1.19(1) (inhibitory), d = 4.18(5) (graph dimension estimated
for5 < r < 10).
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