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near a critical state between sustained activity and an inactive phase, 
exhibiting  optimal computational properties (see:  Beggs & Plenz 
J. Neurosci. 2003; Chialvo Nat. Phys. 2010; Haimovici et al.  PRL 2013 )

                                                                
  Neuro experiments show discontinuous transitions between up/down states

   
 Quasistatic inhomogneity causes dynamical criticality in Griffiths phases

→  Mixed order transition + Griffiths phase together  ?
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Nonuniversal critical exponents or
Mean-field values :=1.5

t 
=2 ?
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Why would the brain be critical ?

Pros: 
Diverging fluctuations →
High sensitivity to stimuli

 Diverging correlation functions →
Optimal transmission and 
storage of information 

Maximal information processing and computational performance

Cons: Tuning to critical point is needed  
        Danger of super-critical (epileptic) behavior 

           Self-organization to criticality (SOC) ?
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 Mean field for reaction diffusion systems : mA → (m+k)A,  nA → (n-l)A 
 For m > n : first order phase transition see:  GÓ: RMP 76 (2004) 663.

  On low dimensional regular, Euclidean lattice:  DP critical point : 
c
 > 0 between 

   inactive and active phases ( GÓ: PRE 67 (2003) 056114. )

  In case of quenched
  heterogeneity:
  Griffiths Phase

PRL 105, 128701 (2010)

Higher order interactions!
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  GP:   Dynamical (scaling) criticality + susceptibility diverges 


c


c


Act.

Abs.

GP

„dirty critical point”

„clean critical point”

CP: infect with prob , heal with prob 1-
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Open Connectome Large Human graphs

Diffusion and structural MRI images with 
1 mm3  voxel resolution : 
10 5 –10 6   nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas) 

Lower levels: Deterministic tractography: Fiber 
Assignment by Continuous Tracking (FACT) 
algorithm 

Map : voxel → vertex (~ 10 7 )

           fiber → edge   (~ 10 10 )

+ noise reduction → graph 

  undirected, weighted

Graph dimension: d < 4

MG, GO Sci.Rep. 2016
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Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 vertex, 8 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition

→ Inherent disorder of KKI-18 can't 
round the phase transition,
No Griffiths Phase, Hub effects!  

Relative Threshold model : 
incoming weights normalized by the sum :  
to model homogeneous sensitivity of nodes  

Inhibition: randomly selected  weights are flipped to negative (quenched)
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Avalanche size distribution compared to 
experiments

Scaling near experimental values in 
the Griffiths Phase (GO PRE 2016) Autocorrelations show the same

              → “Burstyness”
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Robustness of Griffiths effects in homeostatic 
connectome threshold models

G. Ó, Phys. Rev. E 98 (2018) 042126

Addition of a third (refractive) 
state does not destroy GP

Time dependent threshold 
model : GP shrinks, but
survives for weak variations
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Hierarchical Modular Network topology
motivated by connectomes

HMN2d:

Exponentially decaying connection probabilities 
with the levels l :

                pl  k (½) s l

related to networks with long edge probabilities:

             p(R) ~  k R -s 

where Griffiths Phase is present 
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Network metrics 
Topological dimension :   N(r) ~ r d

Effective dimension:

Breadth-first search results, in agreement with the

 1d networks with power-law ranged, long edges:

For s = 4 : <k> dependent continuously changing

 finite dimensions  

For s < 4  small-world networks,  d   

For s > 4 d   ,  fast decaying long links
 

We study s = 3  now in more detail 

+ lattice connectedness at:  l = 1

d
eff

 >  4  →  mean-field behavior expected !



Mean-field behavior of the K=2 threshold model



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes

Real and positive solution for  > 4/5:



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes

Real and positive solution for  > 4/5:



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes

Real and positive solution for  > 4/5:

At the discontinuous transition PL decay:                             and  



Mean-field behavior of the K=2 threshold model

Two-state system: xi = 0, 1 (inactive, active)

• Conditional activation rule:                                   (wij weight of interaction)

If this is true:

– nodes become active with activation probability: 

Otherwise:

– Nodes become inactive with deactivation probability: –

Mean-field approximation: probability of site activation:ρ  and a pair of nodes

 can be selected in a (N-1)(N-2)/2 way. The creation rate is:

Calling: λ = (N − 1)(N − 2) Λ/2 , for a full graph of N nodes

Real and positive solution for  > 4/5:

At the discontinuous transition PL decay:                             and  



K=2 threshold model on HMN2d



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents

→ Griffiths Phase: below c 

n sized dynamically fragmented 

modules create active Rare Regions 



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents

→ Griffiths Phase: below c 

n sized dynamically fragmented 

modules create active Rare Regions 

with probability:  p(n) ~ pl ~ c 4 - l



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents

→ Griffiths Phase: below c 

n sized dynamically fragmented 

modules create active Rare Regions 

with probability:  p(n) ~ pl ~ c 4 - l



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents

→ Griffiths Phase: below c 

n sized dynamically fragmented 

modules create active Rare Regions 

with probability:  p(n) ~ pl ~ c 4 - l

and decay slowly with~ exp(b n)

The density of active sites:

(t)  ~  ∫ dn   n  p(n)  exp [-t / ( n )]



K=2 threshold model on HMN2d

By running the model on the 

HMN2d graphs : discontinuous 

transition + PLs  with 

continuously varying exponents

→ Griffiths Phase: below c 

n sized dynamically fragmented 

modules create active Rare Regions 

with probability:  p(n) ~ pl ~ c 4 - l

and decay slowly with~ exp(b n)

The density of active sites:

(t)  ~  ∫ dn   n  p(n)  exp [-t / ( n )]

For   c
0 <  < c  :  (t) ~ t - c / b
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Explanation for the Griffiths Phase

Hubs or cores in modules remain active which decay as:  

Random, inter-module connections with single links  ↔  K=2  
→  quasi unconnected, finite rare regions
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Conclusions

      May apply to other heretogeneous, excitable systems 
G. Ó. & B. S. PHYSICAL REVIEW RESEARCH 3, 013106 (2021)



Thank you for your attention !
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Inhibitory weights in the local homeostasis

Inhibitory links (10-30%) generate Griffiths Phase 

with non-universal power laws and ultra-slow dynamics at c 

~ 1.3 - 2 G.Ó. Phys. Rev. E 94, 062411 (2016) 
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Inhibitory (negative) links compared to 
experiments

Duration scaling exponent within experimental range:   1.5 < 
t
 2.4

J.M. Palva et al PNAS 110 (2013) 3585 

Inhibitions: 20% of links: w
ij
 → -w

ij 
randomly

K
c
 increases to 1.9(1), but = 0.6(1) remains the same, and below it:
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