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Introduction and motivation

 Twin boundary motion governs the plastic deformation of a variety of
materials (e.g., Mg, Ti, shape memory alloys, ferroelastics, ferroelectrics).

* Twin boundary motion is studied at both slow and high loading rates.




Twin boundary motion occurs via discrete and impulsive events called ‘avalanches’.
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High-rate tests

Twin boundary velocity changes were found to be bounded
from above by a kinetic law in a defect free crystal.
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Investigate twin boundary

motion at nanometer and
microsecond scales Vvia
direct measurements during
slow-rate loading.

Methodology

b o

Measure the force (stress) and
magnetic emission (ME) of
NiMnGa during twin boundary
motion.




i Experimental setup

Compression
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e Magnetization changes only due
to twin boundary motion.
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M Magnetic emission due to:
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e Twin boundary motion
e Magnetic domain switching
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----=="" Force and ME measurements

Force measurements

e Advantage: Directly related to features
of the twin boundary motion.
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Force and ME measurements

Force measurements ME measurements
e Advantage: Directly related to features e Advantage: ME measurements are
of the twin boundary motion. capable of detecting small (nm scale)

and rapid (us scale) events.
Measured pid (u )
/ stress

1 Ao Measured
Vr = . Acht = Vo=~ ME voltage
V . 7Fcoil
Volumes undergoing T NuoyM;
twinning transformation f
during avalanches Rate of change of volumes .
undergoing twinning transformation :
e Limitation: Capture slow (ms scale) e Limitation: Valid under specific °

and large (um scale) events. experimental conditions.



Validation of the relation

between V; and v
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e Results: Over 97% (210 out of 216) stress drops detected in 9 experiments
have PCC > 0.9.

e Conclusion: Using our developed method, twin boundary motion can be
directly studied at nanometer and microsecond scales.
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-~ Nanometer and microsecond scales
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..---="" Nanometer and microsecond scales
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60% of the events correspond to twin boundary displacement
smaller than a single lattice spacing.
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Results
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Statistical analysis

o Data —Calculated
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S Statistical analysis

o Data
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SRPRE Statistical analysis

100 . o Data == Calculated
10-1 Proposed distribution:
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----**"" Physical meaning of V
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-2 Physical meaning of v<*°//
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-2 Physical meaning of v<*°//
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rmay Obtained from slow-rate tests matches the upper bound predicted by the
kinetic law (v23%"4(g)) obtained from high-rate magnetic pulse tests.

Finding:
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Avalanche hierarchies
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Avalanche hierarchies
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Summary and conclusions

A novel experimental method, in which the measured ME is directly
related to twin boundary motions at nanometer and microsecond
scales, has been developed.

We showed that the source of the cutoff value V4077

Tmax 1S the kinetic law
in a defect free crystal.

We suggested that there are additional unexplored hierarchies of
avalanches with sizes and durations that are smaller than the detection
capabilities of the ME sensor. These avalanches are small enough to
follow the kinetic law.

The same behavior of twin boundary motion occurs both at high-rate
and slow-rate tests; therefore, it can be described by the same theory.
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