

nanometer and microsecond scales

Emil Bronstein, László Z. Tóth, Lajos Daróczi, Dezsö L. Beke, Ronen Talmon, and Doron Shilo.

Introduction and motivation

- Twin boundary motion governs the plastic deformation of a variety of materials (e.g., Mg, Ti, shape memory alloys, ferroelastics, ferroelectrics).
- Twin boundary motion is studied at both **slow** and **high loading rates**.

Slow-rate tests

Twin boundary motion occurs via discrete and impulsive events called 'avalanches'.

E. Bronstein, et al., *Adv. Funct. Mater.* **31** (2021) 2106573.

High-rate tests

Twin boundary velocity changes were found to be bounded from above by a **kinetic law** in a **defect free crystal**.

Physics of Solids **61** (2013) 726–741.

 Kinetic laws have not been discussed

 Kinetic laws have not been discussed

Research goal and methodology

Investigate twin boundary motion at **nanometer** and **microsecond** scales via **direct** measurements during slow-rate loading.

Goal

Measure the force (stress) and magnetic emission (ME) of NiMnGa during twin boundary motion.

Methodology

Experimental setup

Goal

Measure simultaneously:

- Force
- Magnetization changes **only** due to twin boundary motion.

Magneto-mechanical microstructure

Magnetic emission due to:

- Twin boundary motion
- Magnetic domain switching

Magneto-mechanical microstructure

H = 0

Magneto-mechanical microstructure

Magnetic emission (ME) **only** due to twin boundary motion

Force and ME measurements

Force measurements

• Advantage: Directly related to features of the twin boundary motion.

$$x_{TB} = \frac{1}{\varepsilon_T} \left(c \Delta t - \ell_0 \frac{\Delta \sigma}{Y} \right)$$

Force and ME measurements

Force measurements

• Advantage: Directly related to features of the twin boundary motion.

$$V_T = \frac{1}{\varepsilon_T} \left(Ac\Delta t - V_0 \frac{\Delta \sigma}{Y} \right)$$
 Measured stress

Volumes undergoing twinning transformation during avalanches

 Limitation: Capture slow (ms scale) and large (μm scale) events.

ME measurements

 Advantage: ME measurements are capable of detecting small (nm scale) and rapid (μs scale) events.

 $\dot{V}_T \stackrel{\bullet}{=} \frac{\ell_{coil}}{N\mu_0 M_s} v \checkmark$

Measured ME voltage

- Rate of change of volumes undergoing twinning transformation
 - Limitation: Valid under specific experimental conditions.

• • • •

Validation of the relation between \dot{V}_T and v

- Results: Over 97% (210 out of 216) stress drops detected in 9 experiments have PCC > 0.9.
- Conclusion: Using our developed method, twin boundary motion can be directly studied at nanometer and microsecond scales.

Nanometer and microsecond scales

Nanometer and microsecond scales

60% of the events correspond to twin boundary displacement **smaller** than a single lattice spacing.

Results

• • • •

.

Statistical analysis

E. Bronstein, et al., Adv. Funct. Mater. 31 (2021) 2106573.

••••

Statistical analysis

E. Bronstein, et al., Adv. Funct. Mater. 31 (2021) 2106573.

••••

Statistical analysis

Proposed distribution:
$$p(\dot{V}_{T,max}) \propto (\dot{V}_{T,max})^{-\alpha} \exp\left(-\frac{\dot{V}_{T,max}}{\dot{V}_{T,max}^{cutoff}}\right)$$

The cutoffs are in the middle of the variables' range, indicating on **limits related to the physical process**.

E. Bronstein, et al., Adv. Funct. Mater. 31 (2021) 2106573.

E. Faran, D. Shilo, Journal of the Mechanics and Physics of Solids 61 (2013) 726–741.

E. Faran, D. Shilo, *Journal of the Mechanics and Physics of Solids* **61** (2013) 726–741.

Finding: $\dot{V}_{T,max}^{cutoff}$ obtained from slow-rate tests matches the upper bound predicted by the <u>kinetic law</u> ($v_{TB}^{bound}(g)$) obtained from high-rate magnetic pulse tests.

• • • •

Avalanche hierarchies

• • • •

Avalanche hierarchies

Summary and conclusions

- A novel experimental method, in which the measured ME is directly related to twin boundary motions at nanometer and microsecond scales, has been developed.
- We showed that the source of the **cutoff** value $\dot{V}_{T,max}^{cutoff}$ is the **kinetic law** in a defect free crystal.
- We suggested that there are additional **unexplored hierarchies** of avalanches with **sizes** and **durations** that are **smaller** than the detection capabilities of the ME sensor. These avalanches are small enough to follow the kinetic law.
- The **same** behavior of twin boundary motion occurs both at **high-rate** and **slow-rate** tests; therefore, it can be described by the **same theory**.

 Kinetic laws have not been discussed

 Kinetic laws have not been discussed

 Kinetic laws have not been discussed

 Kinetic laws have not been discussed

Thank you

 E. Bronstein, L. Z. Tóth, L. Daróczi, D. L. Beke, R. Talmon, and D. Shilo, "Tracking Twin Boundary Jerky Motion at Nanometer and Microsecond Scales." *Advanced Functional Materials* **31** (2021) 2106573.

emilbr@campus.technion.ac.il

•••

