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▪ A crystal/grain can be separated into domains/twins that have different 

orientation of the unit cell. 

▪ The interfaces between domain/twins are called twin boundaries.

▪ Mechanical stress / electric field / magnetic field  Expansion of the favored 

domain/twin-variant on the expense of other domains/twin-variants.

Twin boundary motion

Similar mechanism of actuation
Magnetic or 

electric field

Examples: 

• Domain switching in ferroelectric materials

• Twinning reorientation in ferromagnetic shape memory alloy (FSMA) NiMnGa



Example: Domain switching in ferroelectric BaTiO3

Twin Motion Faster than the Speed of Sound

Faran and Shilo, PRL, (2010).

Time: t

Time: t + 0.6 µs



Example: Phase transformation in SMA

200 m 200 m200 m
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𝐴

Temperature

Self similar propagation of the phase boundary and twinning microstructure

Analysis of austenite-martensite phase boundary and twinned microstructure in SMA

Bronstein, Faran, and Shilo, Acta Mater, (2019).



4 𝑚𝑚

100,000 Frames Per Second

Example: Plastic deformation in magnesium

High-rate nucleation and motion of twin boundaries in Mg single crystals

Faran and Shilo, to be published.



5 𝑚𝑚

20,000 Frames Per Second

Example: Twinning reorientation in FSMA Ni-Mn-Ga

Variability of twin boundary velocities in 10M Ni-Mn-Ga measured under μs-scale force pulses

Mizrahi, Shilo, and Faran, SMS, (2020).

Type IType II





L. Daróczi, E. Piros, L.Z. Tóth, D.L. Beke,
Phys. Rev. B 96 (2017) 014416.
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APL Materials 5 (2017) 046102.
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Micro-scale

Kinetic laws

Atomistic/lattice 

scale structure

Macroscopic 

Continuum 

behavior of devices



Example: The twinning stress in various materials

Twin Boundary Structure and Mobility

Shilo, Faran, Karki, Müllner, Acta Mater, (2021).



Example: Twin boundary velocity vs. electric field in ferroelectrics

Kinetics of domain wall motion in ferroelectric switching

Hayashi, J. Phys. Soc. Japan, (1973).



Example: Kinetic relations for twin boundary motion in FSMA

The kinetic relation for twin wall motion in NiMnGa

Part I: Faran and Shilo, J. Mech. Phys. Solids (2011)

Part II: Faran and Shilo, J. Mech. Phys. Solids (2013)
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Example: Discrete twin boundary dynamic simulations

Inertia controlled twinning in Ni-Mn-Ga actuators: a discrete twin boundary dynamics study

Faran, Riccardi, Shilo, SMS, (2017).

No fitting of unknown parameters !



The enigma of twin boundary motion

• The average and STD of a power 
law distribution are undefined or 
do not represent a typical (most 
probable) value.

• Avalanches are not governed by 
characteristic properties or kinetic 
laws.

• Some variables that 
characterize the twin boundary 
motion display a characteristic 
value or follow a kinetic law.
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Calls for measuring different variables during avalanche events



Variables involved in the physical process

Measure: stress () vs. time (t)
0 0

L ct

L L



= =Apply: controlled external/average strain c – applied displacement rate

𝐿0 - Sample’s length



Variables involved in the physical process
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Variable 3: Total acoustic emission energy during an event: AEE
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Two types of twin boundaries in Ni-Mn-Ga

Type IType II

ሶ𝜎 =
𝑌

𝐿0
𝑐 − 𝜀𝑇𝑣𝑇𝐵









𝑣𝑇𝐵 =
𝑐

𝜀𝑇
−

ሶ𝜎𝐿0
𝑌𝜀𝑇



• There are no time intervals during which the twin boundary motion stops.

• The twin boundary moves during all time but with different velocities.

𝑣𝑇𝐵 =
𝑐

𝜀𝑇
−

ሶ𝜎𝐿0
𝑌𝜀𝑇



Statistical distributions of AE and twin boundary velocity 

during mechanical tests

Velocity - Gaussian distribution



Statistical distributions of AE and twin boundary velocity 

during mechanical tests

Velocity - Gaussian distribution
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distribution is determined by the 

material’s kinetic relation.

• The distribution width scales with 

the average velocity.
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Statistical distributions of AE and twin boundary velocity 

during mechanical tests

AE - Power law distributionVelocity - Gaussian distribution

• Dynamic criticality: a state at which 

the dynamics of the process is 

unpredictable

• The average value of the normal 

distribution is determined by the 

material’s kinetic relation.

• The distribution width scales with 

the average velocity.

Enigma



A similar enigma for 90 domain wall motion in ferroelectric BaTiO3

AE energyDomain wall velocity

• Power law distribution• Well determined kinetic law



Coexistence of a well-determined kinetic law and a scale-

invariant power law during the same physical process



Coexistence of a well-determined kinetic law and a scale-

invariant power law during the same physical process



The two different statistical behaviors reflect the mixing of different types of fluctuations:

During most of the twin boundary motion:

Slow and mild non-critical fluctuations about an average value, predicted by a kinetic law.

During short times:

Fast and abrupt avalanches that display a power law distribution.





• Time intervals during which the stress increases linearly, indicating that the twin boundary doesn’t move.

• Distinct abrupt stress drops that occur during twin boundary motion.

ሶ𝜎 =
𝑌

𝐿0
𝑐 − 𝜀𝑇𝑣𝑇𝐵



Statistical distributions
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Statistical distributions

• 98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable
stress drop event.
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Statistical distributions

• 98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable
stress drop event.

• All values of EAE are smaller by at least 7 orders of magnitude than the corresponding value of Um .
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Statistical distributions

• 98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable
stress drop event.

• All values of EAE are smaller by at least 7 orders of magnitude than the corresponding value of Um .

• The overall AE energy is smaller by 8 orders of magnitude than the overall released mechanical
energy.
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Relations between stress drops and AE on the level of individual events

• 94% of the stress drop events were accompanied by an AE signal with an energy

larger than 10 aJ.

• The probability of finding an AE event during a stress drop is ~ 100 times higher than
between stress drops.

∆𝒕 = 𝟑 [𝒎𝒔]



Stress drops vs AE signals on the level of individual events

Lower bound: 

min( )AE LBE E=

1.24

LB mE C U= 

AE LBE E E= + 

305 events

• 𝑬𝑳𝑩 is associated with macroscopic stress changes.



Analysis of AE events occurring during stress drops

* Only 305 events

AE LBE E E= + 

The distribution of EAE is centered 
about a peak that represents a typical 
value. 

The distribution of E has a power law 
segment

The process that contributes to E is close to dynamic criticality.

( ) exp
cutoff

E
P E E

E

−
 

   −   
1.45 0.05 = 
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Avalanche is manifested by a 
burst of twin boundary velocity
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m T TBU A x  

TB TBx v dt = 



• The stress drop generates a wide band of acoustic waves, most of them with frequencies that scale as 1/t
(sub kHz range) and are much lower than the frequency range captured by the AE transducer (above 100 kHz).

Therefore: ∆𝑼𝒎≫ 𝑬𝑨𝑬

t ms scale
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• But a different 𝑬𝑨𝑬.
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The real behavior of 
type I twin boundaries 
in Ni-Mn-Ga



• There is no direct correlation between parameters measured by the force sensor

(∆𝒙𝑻𝑩, ∆𝝈 , and ∆𝑼𝒎) and the AE sensor during the same events.

• There is a lower bound for 𝑬𝑨𝑬, which is approximately proportional to ∆𝑼𝒎.

• The additional AE energy, above the lower bound, display a power law

distribution, indicating that this contribution comes from local events that occur

at much smaller scales (nm length scale and µs time scale).







• When studying avalanches during a given process, it is beneficial to consider all knowledge about this
process, including knowledge that came from studies not focused on avalanches.
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• When studying avalanches during a given process, it is beneficial to consider all knowledge about this
process, including knowledge that came from studies not focused on avalanches.

• Unified theories that explain both avalanche statistics and kinetic laws are highly desired.

• A first step toward obtaining such theories is to take simultaneous measurements of different variables.


