Investigation of avalanche phenomena by simultaneous measurements of different variables

Noam Zreihan, Eilon Faran, Emil Bronstein, Doron Shilo

Laboratory for Nano and Micro Mechanics of Materials Mechanical Engineering, Technion - Israel Institute of Technology

> Eduard Vives, Antoni Planes Facultat de Física, Universitat de Barcelona

Avalanche Debrecen, August 30 2022

supported by Israel Science Foundation

Twin boundary motion

- A crystal/grain can be separated into domains/twins that have different orientation of the unit cell.
- The interfaces between domain/twins are called twin boundaries.
- Mechanical stress / electric field / magnetic field ⇒ Expansion of the favored domain/twin-variant on the expense of other domains/twin-variants.

Examples:

- Domain switching in ferroelectric materials
- Twinning reorientation in ferromagnetic shape memory alloy (FSMA) NiMnGa

Example: Domain switching in ferroelectric BaTiO₃

Time: *t*

Time: *t* + 0.6 μs

Twin Motion Faster than the Speed of Sound Faran and Shilo, PRL, (2010).

Example: Phase transformation in SMA

Self similar propagation of the phase boundary and twinning microstructure

Temperature

Analysis of austenite-martensite phase boundary and twinned microstructure in SMA Bronstein, Faran, and Shilo, Acta Mater, (2019).

Example: Plastic deformation in magnesium

100,000 Frames Per Second

4 mm

High-rate nucleation and motion of twin boundaries in Mg single crystals *Faran and Shilo, to be published.*

Example: Twinning reorientation in FSMA Ni-Mn-Ga

Variability of twin boundary velocities in 10M Ni-Mn-Ga measured under µs-scale force pulses *Mizrahi, Shilo, and Faran, SMS, (2020).* Many studies reported power law distributions of avalanches during the motion of twin boundaries in different materials

Many studies reported power law distributions of avalanches during the motion of twin boundaries in different materials

101

3.2 ε~1.5 10¹ -30 $ln(v^2)$ 15mN/min 25mN/min 10 30mN/min s = 1.6 **E A** 10⁻² PbZrO, 10⁻⁴ 10-11 10-13 10-12 10-10 10^{-9} 10⁻⁶ v_{2}^{2} (mm²/s^s) S. Puchberger et al., APL Materials 5 (2017) 046102.

L. Daróczi, E. Piros, L.Z. Tóth, D.L. Beke, *Phys. Rev. B* **96** (2017) 014416.

V. Soprunyuk, S. Puchberger, A. Tröster, E. Vives, E. K. H. Salje, W. Schranz, J. Phys. Condens. Matter. **29** (2017) 224002. The characteristics and kinetic laws for twin boundary motion can be accurately modeled and predicted

Example: The twinning stress in various materials

Twin Boundary Structure and Mobility Shilo, Faran, Karki, Müllner, Acta Mater, (2021).

Example: Twin boundary velocity vs. electric field in ferroelectrics

Kinetics of domain wall motion in ferroelectric switching Hayashi, J. Phys. Soc. Japan, (1973).

Example: Kinetic relations for twin boundary motion in FSMA

The kinetic relation for twin wall motion in NiMnGa Part I: Faran and Shilo, J. Mech. Phys. Solids (2011) Part II: Faran and Shilo, J. Mech. Phys. Solids (2013)

Example: Discrete twin boundary dynamic simulations

Inertia controlled twinning in Ni-Mn-Ga actuators: a discrete twin boundary dynamics study *Faran, Riccardi, Shilo, SMS, (2017).*

The enigma of twin boundary motion

Power law distributions of avalanche events

- The average and STD of a power law distribution are undefined or do not represent a typical (most probable) value.
- Avalanches are not governed by characteristic properties or kinetic laws.

Well predicted twinning stress and kinetic laws

 Some variables that characterize the twin boundary motion display a characteristic value or follow a kinetic law.

The enigma of twin boundary motion

Power law distributions of avalanche events

- The average and STD of a power law distribution are undefined or do not represent a typical (most probable) value.
- Avalanches are not governed by characteristic properties or kinetic laws.

Well predicted twinning stress and kinetic laws

 Some variables that characterize the twin boundary motion display a characteristic value or follow a kinetic law.

Calls for measuring different variables during avalanche events

Apply: controlled external/average strain

Measure: stress (σ) vs. time (t)

$$\mathcal{E} = \frac{\Delta L}{L_0} = \frac{ct}{L_0}$$

c – applied displacement rate L_0 - Sample's length

Applied strain:
$$\mathcal{E} = \frac{ct}{L_0} = \frac{\sigma}{Y} + \mathcal{E}_{trans}$$

c – displacement rateY – effective modulus (stiffness)

Applied strain:

Strain due to twin boundary motion:

$$\mathcal{E}_{trans} = \frac{\mathcal{X}_{TB}}{L_0} \mathcal{E}_T$$

 X_{TB} – twin boundary displacement $\mathcal{E}_T = 0.06 - \text{twinning strain}$

 $\mathcal{E}_{trans} = \frac{X_{TB}}{L_0} \mathcal{E}_T$

Applied strain: $\mathcal{E} = \frac{c_i}{L_0}$

$$\mathcal{E} = \frac{ct}{L_0} = \frac{\sigma}{Y} + \mathcal{E}_{trans}$$
 $c - displacement rate $Y - effective modulus (stiffness)$$

 x_{TB} – twin boundary displacement \mathcal{E}_T = 0.06 – twinning strain

Variable 1: Twill boundary displacement during an avalanche event:

Strain due to twin boundary motion:

$$x_{TB} = \frac{c\Delta t}{\varepsilon_T} - \frac{L_0}{\varepsilon_T Y} \Delta \sigma$$

Released potential (elastic) energy during an avalanche event:

$$\Delta U_P \cong -A\sigma\varepsilon_T \cdot \Delta x_{TB}$$

Applied strain: $\mathcal{E} = \frac{CT}{L_0} = \frac{O}{Y} + \mathcal{E}_T$ oundary motion: $\mathcal{E}_{trans} = \frac{X_{TB}}{L_0} \mathcal{E}_T$

$$\mathcal{E} = \frac{ct}{L_o} = \frac{\sigma}{Y} + \mathcal{E}_{trans}$$
 $c - displacement rate $Y - effective modulus (stiffness)$$

 X_{TB} – twin boundary displacement \mathcal{E}_T = 0.06 – twinning strain

Variable 1: Twill boundary displacement during an avalanche event:

Strain due to twin boundary motion:

$$\Delta x_{TB} = \frac{c\Delta t}{\varepsilon_T} - \frac{L_0}{\varepsilon_T Y} \Delta \sigma$$

Released potential (elastic) energy during an avalanche event:

$$\Delta U_P \cong -A\sigma\varepsilon_T \cdot \Delta x_{TB}$$

<u>Variable 2:</u> Temporary twin boundary velocity:

Potential energy release rate:

$$\psi_{TB} = \frac{c}{\varepsilon_T} - \frac{L_0}{\varepsilon_T Y} \dot{\sigma}$$

$$\dot{U}_P \cong -A\sigma\varepsilon_T \cdot v_{TE}$$

Applied strain: $\mathcal{E} = \frac{ct}{L_0} = \frac{\sigma}{Y} + \mathcal{E}_{trans}$

$$\varepsilon_{trans} = \frac{x_{TB}}{L_0} \varepsilon_T$$

c – displacement rateY – effective modulus (stiffness)

 x_{TB} – twin boundary displacement \mathcal{E}_T = 0.06 – twinning strain

Variable 1: Twill boundary displacement during an avalanche event:

Strain due to twin boundary motion:

$$\Delta x_{TB} = \frac{c\Delta t}{\varepsilon_T} - \frac{L_0}{\varepsilon_T Y} \Delta \sigma$$

Released potential (elastic) energy during an avalanche event:

$$\Delta U_P \cong -A\sigma\varepsilon_T \cdot \Delta x_{TB}$$

<u>Variable 2:</u> Temporary twin boundary velocity:

Potential energy release rate:

$$v_{TB} = \frac{c}{\varepsilon_T} - \frac{L_0}{\varepsilon_T Y} \dot{\sigma}$$

 E_{AE}

$$\dot{U}_P \cong -A\sigma\varepsilon_T \cdot v_{TB}$$

Variable 3: Total acoustic emission energy during an event:

Two types of twin boundaries in Ni-Mn-Ga

ne

200 µm

twin wal

$$\dot{\sigma} = \frac{Y}{L_0} (c - \varepsilon_T v_{TB})$$

- There are no time intervals during which the twin boundary motion stops.
- The twin boundary moves during all time but with different velocities.

Statistical distributions of AE and twin boundary velocity during mechanical tests

Velocity - Gaussian distribution

Statistical distributions of AE and twin boundary velocity during mechanical tests

Velocity - Gaussian distribution

- The average value of the normal distribution is determined by the material's kinetic relation.
- The distribution width scales with the average velocity.

Statistical distributions of AE and twin boundary velocity during mechanical tests

Velocity - Gaussian distribution

- The average value of the normal distribution is determined by the material's kinetic relation.
- The distribution width scales with the average velocity.

AE - Power law distribution

• Dynamic criticality: a state at which the dynamics of the process is unpredictable

Statistical distributions of AE and twin boundary velocity during mechanical tests

10⁵

the dynamics of the process is

unpredictable

- The average value of the normal • distribution is determined by the material's kinetic relation.
- The distribution width scales with • the average velocity.

A similar enigma for 90° domain wall motion in ferroelectric BaTiO₃

• Well determined kinetic law

Power law distribution

Coexistence of a well-determined kinetic law and a scaleinvariant power law during the same physical process

Coexistence of a well-determined kinetic law and a scaleinvariant power law during the same physical process

Conclusions for type II twin boundaries

The two different statistical behaviors reflect the mixing of different types of fluctuations:

During most of the twin boundary motion:

Slow and mild non-critical fluctuations about an average value, predicted by a kinetic law.

During short times:

Fast and abrupt avalanches that display a power law distribution.

- Time intervals during which the stress increases linearly, indicating that the twin boundary doesn't move.
- Distinct abrupt stress drops that occur during twin boundary motion.

Mechanical energy released during an avalanche:

$$\Delta U_m = \frac{F_{up}^2 - F_{down}^2}{2k}$$

Mechanical energy released during an avalanche:

$$\Delta U_m = \frac{F_{up}^2 - F_{down}^2}{2k}$$

• 98.5% of the AE signals with an energy larger than 10 *aJ* were not associated with any detectable stress drop event.

• 98.5% of the AE signals with an energy larger than 10 *aJ* were not associated with any detectable stress drop event.

• All values of E_{AE} are smaller by at least 7 orders of magnitude than the corresponding value of ΔU_m .

- 98.5% of the AE signals with an energy larger than 10 *aJ* were not associated with any detectable stress drop event.
- All values of E_{AE} are smaller by at least 7 orders of magnitude than the corresponding value of ΔU_m .
- The overall AE energy is smaller by 8 orders of magnitude than the overall released mechanical energy.

Relations between stress drops and AE on the level of individual events

- 94% of the stress drop events were accompanied by an AE signal with an energy larger than 10 *aJ*.
- The probability of finding an AE event during a stress drop is ~ 100 times higher than between stress drops.

Stress drops vs AE signals on the level of individual events

• *E_{LB}* is associated with macroscopic stress changes.

Analysis of AE events occurring during stress drops

The distribution of E_{AE} is centered about a peak that represents a typical value.

The distribution of ΔE has a power law segment

The process that contributes to ΔE is close to dynamic criticality.

Avalanche is manifested by a burst of twin boundary velocity

• The stress drop generates a wide band of acoustic waves, most of them with frequencies that scale as 1/∆t (sub kHz range) and are much lower than the frequency range captured by the AE transducer (above 100 kHz).

Therefore: $\Delta U_m \gg E_{AE}$

Shape of the v_{TB} vs. *t* avalanche

Shape of the v_{TB} vs. *t* avalanche

Shape of the v_{TB} vs. *t* avalanche

Conclusions for type I twin boundary

- There is no direct correlation between parameters measured by the force sensor $(\Delta x_{TB}, \Delta \sigma, \text{and } \Delta U_m)$ and the AE sensor <u>during the same events</u>.
- There is a lower bound for E_{AE} , which is approximately proportional to ΔU_m .
- The additional AE energy, above the lower bound, display a power law distribution, indicating that this contribution comes from local events that occur at much smaller scales (nm length scale and µs time scale).

• When studying avalanches during a given process, it is beneficial to consider all knowledge about this process, including knowledge that came from studies not focused on avalanches.

- When studying avalanches during a given process, it is beneficial to consider all knowledge about this process, including knowledge that came from studies not focused on avalanches.
- Unified theories that explain both avalanche statistics and kinetic laws are highly desired.

- When studying avalanches during a given process, it is beneficial to consider all knowledge about this process, including knowledge that came from studies not focused on avalanches.
- Unified theories that explain both avalanche statistics and kinetic laws are highly desired.
- A first step toward obtaining such theories is to take simultaneous measurements of different variables.