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Twin boundary motion

= Acrystal/grain can be separated into domains/twins that have different
orientation of the unit cell.

= The interfaces between domain/twins are called twin boundaries.

= Mechanical stress / electric field / magnetic field = Expansion of the favored
domain/twin-variant on the expense of other domains/twin-variants.

Examples:
« Domain switching in ferroelectric materials
 Twinning reorientation in ferromagnetic shape memory alloy (FSMA) NiMnGa
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Example: Domain switching in ferroelectric BaTiO,

Time: t

Time: t+ 0.6 us

Twin Motion Faster than the Speed of Sound
Faran and Shilo, PRL, (2010).



Example: Phase transformation in SMA

Self similar propagation of the phase boundary and twinning microstructure
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Analysis of austenite-martensite phase boundary and twinned microstructure in SMA
Bronstein, Faran, and Shilo, Acta Mater, (2019).



Example: Plastic deformation in magnesium
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High-rate nucleation and motion of twin boundaries in Mg single crystals
Faran and Shilo, to be published.



Example: Twinning reorientation in FSMA Ni-Mn-Ga
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Variability of twin boundary velocities in 10M Ni-Mn-Ga measured under pgs-scale force pulses
Mizrahi, Shilo, and Faran, SMS, (2020).



Many studies reported power law distributions
of avalanches during the motion of
twin boundaries in different materials



Many studies reported power law distributions
of avalanches during the motion of
twin boundaries in different materials

N(v,*)

2 255
v, (mm7s’)

V. Soprunyuk, S. Puchberger, A. Troster, E. Vives, E.
K. H. Salje, W. Schranz,
J. Phys. Condens. Matter. 29 (2017) 224002.

1016
1015 &

1014

1013

15mN/min
25mN/min
10""4 30mN/min

10"

1010

10°

T T ™TT T T T T

10 10™ 107 10° 10°1

v_*(mm’/s%) 10
AV

L. Dardczi, E. Piros, L.Z. Toth, D.L. Beke,
Phys. Rev. B96 (2017) 014416.

S. Puchberger et al.,
APL Materials 5 (2017) 046102.



The characteristics and kinetic laws
for twin boundary motion can be

accurately
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Example: The twinning stress in various materials
- BaTiO3
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Twin Boundary Structure and Mobility
Shilo, Faran, Karki, Mullner, Acta Mater, (2021).



Example: Twin boundary velocity vs. electric field in ferroelectrics
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Kinetics of domain wall motion in ferroelectric switching
Hayashi, J. Phys. Soc. Japan, (1973).



Example: Kinetic relations for twin boundary motion in FSMA
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The kinetic relation for twin wall motion in NiMnGa
Part I: Faran and Shilo, J. Mech. Phys. Solids (2011)
Part Il: Faran and Shilo, J. Mech. Phys. Solids (2013)



Example: Discrete twin boundary dynamic simulations

No fitting of unknown parameters !
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Inertia controlled twinning in Ni-Mn-Ga actuators: a discrete twin boundary dynamics study
Faran, Riccardi, Shilo, SMS, (2017).



The enigma of twin boundary motion

Power law
distributions of
avalanche events

* The average and STD of a power

law distribution are undefined or
do not represent a typical (most
probable) value.

* Avalanches are not governed by

characteristic properties or kinetic
laws.

Well predicted
twinning stress and
kinetic laws

 Some variables that
characterize the twin boundary
motion display a characteristic
value or follow a kinetic law.



* The average and STD of a power

The enigma of twin boundary motion

Power law Well predicted

distributions of twinning stress and
avalanche events kinetic laws

 Some variables that
characterize the twin boundary
motion display a characteristic
value or follow a kinetic law.

law distribution are undefined or
do not represent a typical (most
probable) value.

* Avalanches are not governed by

characteristic properties or kinetic
laws.

Calls for measuring different variables during avalanche events



Variables involved in the physical process

AL ct
LO LO

c — applied displacement rate
Ly - Sample’s length

Apply: controlled external/average strain &

Measure: stress (o) vs. time (t)



Variables involved in the physical process

ct o c — displacement rate
Applied strain: &=""=71 Eirans Y — effective modulus (stiffness)



Variables involved in the physical process

¢ o C —displacement rate
Applied strain: &= L_ = ? + Eirans Y — effective modulus (stiffness)
0
X Xig —twin ndary displacement
Strain due to twin boundary motion: Eqpans = —= Er Te ~ tWin boundary displa

L, &; =0.06 —twinning strain
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Variables involved in the physical process

¢ o C —displacement rate
Applied strain: &= L_ = ? + Eirans Y — effective modulus (stiffness)
0
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Potential energy release rate: U p = —AG&‘T Vg



Variables involved in the physical process

¢ o C —displacement rate
Applied strain: &= L_ = ? + Eirans Y — effective modulus (stiffness)
0
X o — twi .
Strain due to twin boundary motion: Eirans — ﬂé} T8~ TWN bou_ndz?ry dlsp!acement
L, &; =0.06 —twinning strain
CAt
Variable 1: Twill boundary displacement during AXTB — — LO Ao
an avalanche event: &1 <9TY
Released potential (elastic) energy AU, = —-Aceg; - AXp
during an avalanche event:
Variable 2: Temporary twin boundary velocity: Vig = C _ I‘0 o
& &Y
Potential energy release rate: U p = —AG&‘T Vg

Variable 3: Total acoustic emission energy during an event: EAE



Two types of twin boundaries in Ni-Mn-Ga
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Results for type Il twin boundaries
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Results for type Il twin boundaries
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Results for type Il twin boundaries

0.084 ’ 1 ) )
>
0.082 0.082
0.08
0.078 0.08

305A 31 30.5

30.55\ 30.6 |

0.005 | 0.082
0.085 0.081 o
0.075 ]

725

0.08
30 35 30.555

30.56  30.565

L Noise
F level

50

100 150

Time [sec]

200

c oLy

Urp = —
‘ST YgT



Results for type Il twin boundaries
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« There are no time intervals during which the twin boundary motion stops.
« Thetwin boundary moves during all time but with different velocities.



Statistical distributions of AE and twin boundary velocity
during mechanical tests

Velocity - Gaussian distribution
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Statistical distributions of AE and twin boundary velocity
during mechanical tests

Velocity - Gaussian distribution
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« The average value of the normal
distribution is determined by the
material’s kinetic relation.

* The distribution width scales with
the average velocity.



Statistical distributions of AE and twin boundary velocity
during mechanical tests

Velocity - Gaussian distribution
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AE - Power law distribution
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« Dynamic criticality: a state at which
the dynamics of the process is
unpredictable



Statistical distributions of AE and twin boundary velocity
during mechanical tests

Velocity - Gaussian distribution AE - Power law distribution
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A similar enigma for 90° domain wall motion in ferroelectric BaTiO,

Domain wall velocity
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Coexistence of a well-determined kinetic law and a scale-
Invariant power law during the same physical process
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Coexistence of a well-determined kinetic law and a scale-
Invariant power law during the same physical process
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Conclusions for type Il twin boundaries

The two different statistical behaviors reflect the mixing of different types of fluctuations:

During most of the twin boundary motion:
Slow and mild non-critical fluctuations about an average value, predicted by a kinetic law.

During short times:

Fast and abrupt avalanches that display a power law distribution.



Results for type | twin boundaries
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* Time intervals during which the stress increases linearly, indicating that the twin boundary doesn’t move.

e Distinct abrupt stress drops that occur during twin boundary motion.



Statistical distributions
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Statistical distributions
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* 98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable

stress drop event.
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* 98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable

stress drop event.

* All values of E, are smaller by at least 7 orders of magnitude than the corresponding value of AU, .



Statistical distributions
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98.5% of the AE signals with an energy larger than 10 aJ were not associated with any detectable

stress drop event.

All values of E . are smaller by at least 7 orders of magnitude than the corresponding value of AU, .

The overall AE energy is smaller by 8 orders of magnitude than the overall released mechanical

energy.



Relations between stress drops and AE on the level of individual events
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* 94% of the stress drop events were accompanied by an AE signal with an energy
larger than 10 aJ.

* The probability of finding an AE event during a stress drop is ~ 100 times higher than
between stress drops.



Stress drops vs AE signals on the level of individual events
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E;pis associated with macroscopic stress changes.
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Analysis of AE events occurring during stress drops

* Only 305 events
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The distribution of E,, is centered
about a peak that represents a typical

value.

The process that contributes to AE is close to dynamic criticality.
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Discussion

Avalanche is manifested by a
burst of twin boundary velocity
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* The stress drop generates a wide band of acoustic waves, most of them with frequencies that scale as 1/At
(sub kHz range) and are much lower than the frequency range captured by the AE transducer (above 100 kHz).

Therefore: AU,,>> E 4



Shape of the v.z vs. t avalanche
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Shape of the v.z vs. t avalanche
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Shape of the v.z vs. t avalanche

5
/ AU m = AG&'T ¢ AXTB
|
| , t
| |
| |
|
I AE at frequencies within the :
* The same values of Ax7p , l bandpass of the transducer I
At, Ao, and AU,,,. . / \ :
M
~ I -\ |
* But a different E 4. > | 7 [
| |
—

l¢——— At ~ms scale —



A more complex shape of the vz vs. t avalanche
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A more complex shape of the vz vs. t avalanche
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A more complex shape of the vz vs. t avalanche
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1/7 - within the bandpass of the
transducer.

AE signals generated by the ps
scale velocity burst may overlap.



A more complex shape of the vz vs. t avalanche
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Conclusions for type | twin boundary

« There is no direct correlation between parameters measured by the force sensor
(Axtg, Ao, and AU,,) and the AE sensor during the same events.

« Thereis alower bound for E4g, which is approximately proportional to AU,,.

« The additional AE energy, above the lower bound, display a power law
distribution, indicating that this contribution comes from local events that occur
at much smaller scales (nm length scale and ps time scale).
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Summary

When studying avalanches during a given process, it is beneficial to consider all knowledge about this
process, including knowledge that came from studies not focused on avalanches.

Unified theories that explain both avalanche statistics and kinetic laws are highly desired.

A first step toward obtaining such theories is to take simultaneous measurements of different variables.



