Avalanche phase diagram for thermally activated yielding in amorphous solids

Daniel Korchinski¹, Joerg Rottler¹ ¹University of British Columbia, Stewart Blusson Quantum Matter Institute

Crystalline

Amorphous

Alexandre Nicolas et al. 2018. Review of Modern Physics

Alexandre Nicolas et al. 2018. *Review of Modern Physics*

- Beautiful scaling theory in athermal quasistatic (AQS) limit, distinct from depinning
- Avalanches proceed through sheartransformations with quadrupolar interactions

What happens to avalanches with temperature?

- Partly answered in molecular dynamics (See: Karmakar et al. PRE. 2010)
 - Expect driving rate / temperature dominated regimes
 - Crossovers depend on system size
 - Herschel-Bulkley stress-rise occurs as avalanches overlap

What happens to avalanches with temperature?

- Partly answered in molecular dynamics (See: Karmakar et al. PRE. 2010)
 - Expect driving rate / temperature dominated regimes
 - Crossovers depend on system size
 - Herschel-Bulkley stress-rise occurs as avalanches overlap
- Elastoplastic models expose several new aspects:
 - Residual stress distribution
 - Can probe very long timescales / low temperatures

Athermal Mesoscopic Model of Amorphous Yielding

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{\gamma,i}$, i.e. $x_i = \Sigma_{\gamma,i} |\Sigma_i| = 0$

Residual stress

Thermal Mesoscopic Model of Amorphous Yielding

Coarse grain to level of shear transformation sites

- Sites elastically coupled (finite element)
- Site *i* yields when local stress Σ_i exceeds a local threshold $\Sigma_{v,i}$, i.e. $x_i = \Sigma_{v,i} - |\Sigma_i| = 0$

See:

Marko Popović et al. 2021

Ezequiel Ferrero et al. 2021

For studies of this model and Herschel-Bulkley temperature dependence

For review of mesoscopic models, see Nicolas et al. Rev. Mod. Phys. 90, 045006

10

Results: Residual stress distribution

• $p(x) \sim x^{\theta}$ for T = 0 and large L

Results: Residual stress distribution

- $p(x) \sim x^{\theta}$ for T = 0 and large L
- Thermal activation scale: $x_c \sim T^{\frac{1}{\alpha}}$

Results: Residual stress distribution

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

- Most phase lines originate from competition of timescales
- Main timescales
 - t_{load} between avalanches
 - $au_{plastic}$ the ST plastic time

Temperature effects \gg driving rate effects

Results: Temperature truncated avalanches

Results: Temperature truncated avalanches

Results: Temperature truncated avalanches

• Temperature reduces avalanche size:

$$\langle S \rangle \sim T^{-\frac{\theta}{\alpha}}$$
, for $T > T_c \sim L^{-\frac{d\alpha}{\theta+1}}$

 Interpretation: correlation length & avalanches truncated by either system size or temperature effects Crossing L, T phase line

Results: Thermal HB exponent

• Temperature reduces flowstress

Results: Thermal HB exponent

- Temperature reduces flowstress
- Naïve Herschel-Bulkley fits $\langle \Sigma \rangle(T) = \Sigma_c(T) + C \dot{\gamma}^n$

Results: Thermal HB exponent

 Temperature reduces flowstress

0.8

 $\alpha = 1, 2d$

 $\alpha = 1$, mf

Crossing T, $\dot{\gamma}$ phase line

Conclusions

- When do thermal effects appear? $\dot{\gamma} < \dot{\gamma}_c = \frac{1}{\tau} T^{\frac{1}{\alpha}}$
- When do avalanches overlap? (L, T, $\dot{\gamma}$)
- Correlation length truncated by L or T
- Temperature dependent Herschel-Bulkley n exponent
 - Can this be tied to avalanche exponents? (scaling theory: $\frac{1}{n} = 1 + z/(d - d_f)$)

Paper to appear in PRE

Preprint at: arxiv.org/abs/2204.07545

