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Amorphous yielding transition

Amorphous solid graphic: opentextbc.ca
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Herschel-Bulkley Flow: Σ ∼ Σ + �̇�
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Amorphous yielding transition
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Universal scale-free avalanches

Herschel-Bulkley Flow: Σ ∼ Σ + �̇�
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Amorphous yielding transition

Amorphous solid graphic: opentextbc.ca

Universal scale-free avalanches• Beautiful scaling theory in athermal quasistatic 
(AQS) limit, distinct from depinning

• Avalanches proceed through shear-
transformations with quadrupolar interactions
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What happens to avalanches with temperature?

• Partly answered in molecular dynamics
• Expect driving rate / temperature dominated regimes
• Crossovers depend on system size
• Herschel-Bulkley stress-rise occurs as avalanches overlap

(See: Karmakar et al. PRE. 2010)
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What happens to avalanches with temperature?

• Partly answered in molecular dynamics 
• Expect driving rate / temperature dominated regimes
• Crossovers depend on system size
• Herschel-Bulkley stress-rise occurs as avalanches overlap

• Elastoplastic models expose several new aspects:
• Residual stress distribution
• Can probe very long timescales / low temperatures

(See: Karmakar et al. PRE. 2010)
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Athermal Mesoscopic Model of Amorphous Yielding

Coarse grain to level of shear transformation sites
• Sites elastically coupled (finite element) 
• Site yields when local stress exceeds a local 

threshold , i.e. 

9For review of mesoscopic models, see Nicolas et al. Rev. Mod. Phys. 90, 045006

Stress field
Residual stress



Thermal Mesoscopic Model of Amorphous Yielding

Coarse grain to level of shear transformation sites
• Sites elastically coupled (finite element) 
• Site yields when local stress exceeds a local 

threshold , i.e. 
• Or stochastically, with Arrhenius rate

10For review of mesoscopic models, see Nicolas et al. Rev. Mod. Phys. 90, 045006

Stress field

See:
Marko Popović et al. 2021
Ezequiel Ferrero et al. 2021
For studies of this model and Herschel-Bulkley temperature dependence
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Results: Residual stress distribution

• for and large 
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Results: Residual stress distribution

• for and large 

• Thermal activation scale: 
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Results: Residual stress distribution

• for and large 

• Thermal activation scale: 
• We vary to test scaling laws by 

shuffling the kernel
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Mean-field (mf) shuffled kernel

Two-dimensional (2d) kernel



Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM

𝑡 ≈ 𝑥 /�̇�
Athermal result!
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM

𝑡 ≈ 𝑥 /�̇�
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temporally distinct avalanches (L dependent)

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM

𝑡 = 𝜏
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temporally distinct avalanches (L dependent)

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM

𝑡 controlled 
by L or T
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temporally distinct avalanches (L dependent)

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM
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Results: Phase diagram
• Most phase lines originate 

from competition of timescales
• Main timescales

• between avalanches
• the ST plastic time

Temporally distinct avalanches (L dependent)

Temperature effects ≫ driving rate effects

Phase Diagram of Thermal EPM
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Athermal Herschel-
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Results: Temperature truncated avalanches
• Temperature reduces avalanche 

size:

, for  

T

𝜸

Crossing L, T phase line
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Results: Temperature truncated avalanches
• Temperature reduces avalanche 

size:

, for  

T

𝜸

Crossing L, T phase line
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Results: Temperature truncated avalanches
• Temperature reduces avalanche 

size:

, for  

• Interpretation: correlation length 
& avalanches truncated by either 
system size or temperature 
effects

T

𝜸

Crossing L, T phase line
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Results: Thermal HB exponent
• Temperature reduces flow-

stress

T

𝜸

Crossing T,�̇� phase line
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Results: Thermal HB exponent
• Temperature reduces flow-

stress
• Naïve Herschel-Bulkley fits
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Results: Thermal HB exponent
• Temperature reduces flow-

stress
• Naïve Herschel-Bulkley fits

AQS 
Newtonian
Fluid, n= 1
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Results: Thermal HB exponent
• Temperature reduces flow-

stress
• Naïve Herschel-Bulkley fits

AQS 
Newtonian
Fluid, n= 1
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Crossing T,�̇� phase line
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Conclusions

• When do thermal effects appear? 

• When do avalanches overlap? (L, T, ) 
• Correlation length truncated by L or T
• Temperature dependent Herschel-

Bulkley exponent
• Can this be tied to avalanche exponents?

(scaling theory: )

Phase Diagram of Thermal EPM

Thermal 
Avalanches
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Paper to appear in PRE
Preprint at: arxiv.org/abs/2204.07545
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