

Criticality in Neuronal Avalanches without Timescale Separation

Daniel Korchinski^{1,2}, Javier Orlandi^{1,3}, Seung-Woo Son⁴, Jörn Davidsen^{1,3}

PHYSICAL REVIEW X 11, 021059 (2021)

¹University of Calgary, Complexity Science Group ²University of British Columbia, Stewart Blusson Quantum Matter Institute ³University of Calgary, Hotchkiss Brain Institute ⁴Hanyang University, Department of Applied Physics

• We can record and observe neurons in bulk using electrode arrays

- We can record and observe neurons in bulk using electrode arrays
- You will see periods of activity that we can call "avalanches".

Beggs, J. M.; Plenz, D., 2003

- We can record and observe neurons in bulk using electrode arrays
- You will see periods of activity that we can call "avalanches".

Beggs, J. M.; Plenz, D., 2003

• The size distribution of avalanches appears to be scale free

Electrode Array Data. Beggs, J. M.; Plenz, D., 2003

- The size distribution of avalanches appears to be scale free
- Avalanche exponents suggest a branching process i.e. directed percolation

Can input-driven avalanches be critical?

Input introduces two problems:

Input introduces two problems:

1) Mixed-timescales means independent cascades

Input introduces two problems:

- 1) Mixed-timescales means independent cascades
- 2) Initially independent cascades can then overlap (coalesce)

(2)

Input introduces two problems:

- 1) Mixed-timescales means independent cascades
- 2) Initially independent cascades can then overlap (coalesce)

We use "causal webs" to generalize avalanches

- Use network structure to identify independent cascades
- Overlapping cascades form a single "causal web"
- Details, see: R. V. Williams-Garcia 2017

(2)

Model: The Branching Process

The branching process:

Start a network, activate single neuron.

Each time step, each active neuron independently activates its daughters with probability q Basic properties of neurons

- Are directed computational elements
- All or nothing electrical response
- Sum inputs from multiple parents

In the absence of noise, the probability neuron j activates at time t + 1, given that it has $m_{i,t}$ parents active at time t is:

$$P_{j,t+1} = 1 - (1 - q)^{m_j,t}$$

Model: The Branching Process with Input

The branching process with input:

- Each time step, each active neuron independently activates its daughters with probability q.
- Each time step, each neuron independently activates with probability *p*.

The probability neuron j activates at time t + 1, given that it has $m_{j,t}$ parents active at time t is:

$$P_{j,t+1} = 1 - (1-p)(1-q)^{m_j,t}$$

- Phase diagram for directed 10-regular network
- Subcritical region has finite avalanches
- Supercritical region has a percolating cluster
- Correlation length and average cluster size diverge on critical line

Node in directed 4-regular graph

Node in directed 4-regular graph

Circles are simulations on N=10⁷ graphs, solid lines are on loop-free ("infinite") lattices

Circles are simulations on N=10⁷ graphs, solid lines are on loop-free ("infinite") lattices

- Exponents are from directed and undirected percolation respectively
- Tested numerically on random networks with different au exponents

Conclusions

- Criticality is still possible, even with strong driving
- External input changes the universality class to undirected percolation
- Other markers of directed percolation (dynamic susceptibility, branching ratio=1) don't capture criticality

PHYSICAL REVIEW X 11, 021059 (2021)

Scaling relation for size and time

• $\frac{\tau-1}{\alpha-1} = \sigma vz$ satisfied for directed and undirected regimes respectively with $(\tau, \alpha, \sigma vz)$ being $(\frac{3}{2}, 2, \frac{1}{2})$ and $(\frac{5}{2}, 7, \frac{1}{4})$

Clusters grow by merging on large scales

Self-consistency equations

The active fraction self-consistency equation:

$$\Phi = \sum_{m=0}^{k} {\binom{k}{m}} \Phi^{m} \bar{\Phi}^{k-m} (1 - \bar{p}\bar{q}^{m})$$
$$= 1 - \bar{p}\bar{q}\Phi^{k}.$$

