Innovat

NEE] WA

OouP
{i{g ‘CALGARY, AB
: , NSERC
] CRSNG

‘ Alberta

Criticality in Neuronal Avalanches
without Timescale Separation

Daniel Korchinskil-?, Javier Orlandil-3, Seung-Woo Son?, J6rn Davidsen3

PHYSICAL REVIEW X 11, 021059 (2021)

lUniversity of Calgary, Complexity Science Group

2University of British Columbia, Stewart Blusson Quantum Matter Institute

3University of Calgary, Hotchkiss Brain Institute

4Hanyang University, Department of Applied Physics 1



The Critical Brain Hypothesis: Avalanches

* We can record and observe neurons in bulk using electrode arrays
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The Critical Brain Hypothesis: Avalanches

* We can record and observe neurons in bulk using electrode arrays
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* You will see periods of activity that we can call “avalanches”.
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The Critical Brain Hypothesis: Avalanches

* We can record and observe neurons in bulk using electrode arrays
* You will see periods of activity that we can call “avalanches”.
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The Critical Brain Hypothesis: Avalanches

* The size distribution of avalanches appears to be scale free
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The Critical Brain Hypothesis: Avalanches

* The size distribution of avalanches appears to be scale free

* Avalanche exponents suggest a branching process i.e. directed percolation
fMRI of Human Brain
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Can input-driven avalanches be critical?



Input, Avalanches, and “Coalescence”

Input introduces two problems:
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(1)
Input, Avalanches, and “Coalescence”

Input introduces two problems: i ;

1) Mixed-timescales means independent cascades
2) Initially independent cascades can then overlap (coalesce)

(2)
We use “causal webs” to generalize avalanches
* Use network structure to identify independent cascades

* Overlapping cascades form a single “causal web”
e Details, see: R. V. Williams-Garcia 2017



Model: The Branching Process

The branching process:

Basic properties of neurons
Start a network, activate single

neuron.
Each time step, each active
neuron independently activates

* Are directed computational elements

* All or nothing electrical response

e Sum inputs from multiple parents

its daughters with probability q

In the absence of noise, the probability neuron j activates at time t + 1,
given that it has m; ; parents active at time t is:

Pjtt1=1—(1-¢g)™"



Model: The Branching Process with Input

The branching process with input:

* Each time step, each active neuron independently activates its
daughters with probability g.

* Each time step, each neuron independently activates with
probability p.

The probability neuron j activates at time t + 1, given that it has m; ;
parents active at time t is:

Pity1=1-(1-p)(1—q)™"



Avalanches without timescale separation

Phase diagram for directed 10-regular network

e Subcritical region has finite
avalanches

* Supercritical region has a
percolating cluster
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Avalanches without timescale separation

Phase diagram for directed 10-regular network
S L * Subcritical region has finite
avalanches
* Supercritical region has a
percolating cluster
Supercritical e Correlation length and average
cluster size diverge on critical line
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Avalanches without timescale separation

Phase diagram for directed 10-regular network
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Avalanches without timescale separation

Phase diagram for directed 10-regular network
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Avalanches without timescale separation

Phase diagram for directed 10-regular network
Rescaled singly- and multiply-rooted avalanche distributions
107 5

| e =10"% =
| Critical line — jﬁ = %8—3 =
| p =105 =
' . p =105 =
104 p =107 =

p =10"°
p =107% =
Single root m

Multiple roots o

10~ 1

U 5
B\ Supercritical l,,% 10
C | <
2D 0.02 1‘ J0-11 |
E | Smax
— |
- | z 1016 |
' Subcritical / .
1 O WO .. i 41— : ‘.fﬁl

0 0.04 0.08 .12 1o—* [O—= 0% 10* 10"

Spreading probability, g



Avalanches without timescale separation

* Exponents are from directed and undirected percolation respectively
* Tested numerically on random networks with different T exponents
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Critical phase diagram
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Critical phase diagram
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Conclusions 2001 4\ et

0.04 -

* Criticality is still possible, even with strong
driving

* External input changes the universality 0
class to undirected percolation
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* Other markers of directed percolation
(dynamic susceptibility, branching ratio=1)
don’t capture criticality
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Scaling relation for size and time

—-1 - . . . .
ch—1 = ovz satisfied for directed and undirected regimes respectively

with (7, @, ovz) being (3 2 1) and (2, 7, i)
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Clusters grow by merging on large scales
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Self-consistency equations

The active fraction self-consistency equation:

P — Z( )om®km(1 - pg")

= 1 — pg®*.
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‘ Generating
functions

Hp (x) = XA, (Hp (x))Ai(Ha‘(x))'

28



