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The Critical Brain Hypothesis: Avalanches
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• We can record and observe neurons in bulk using electrode arrays

Cadotte AJ, DeMarse TB, He P, Ding M (2008)
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The Critical Brain Hypothesis: Avalanches

• The size distribution of avalanches appears to be scale free

Electrode Array Data. Beggs, J. M.; Plenz, D., 2003

𝑃 𝑠 ∼ 𝑠ିଵ.ହ

Microelectrode array
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The Critical Brain Hypothesis: Avalanches

• The size distribution of avalanches appears to be scale free
• Avalanche exponents suggest a branching process i.e. directed percolation

Tagliazucchi et al. 2012
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𝑃 𝑠 ∼ 𝑠ିଵ.ହ

Avalanche size
Gregory Scott et al. 2014

Electrode Array Data. Beggs, J. M.; Plenz, D., 2003

𝑃 𝑠 ∼ 𝑠ିଵ.ହ

Microelectrode array Voltage Imaging of Mouse Cortex fMRI of Human Brain

Increasing Scale

𝑃 𝑠 ∼ 𝑠ିଵ.ହ
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Can input-driven avalanches be critical?
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Input, Avalanches, and “Coalescence”

Input introduces two problems:
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Input, Avalanches, and “Coalescence”

Input introduces two problems:
1) Mixed-timescales means independent cascades

(1)
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Input, Avalanches, and “Coalescence”

Input introduces two problems:
1) Mixed-timescales means independent cascades
2) Initially independent cascades can then overlap (coalesce)

(1)

(2)
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Input, Avalanches, and “Coalescence”

Input introduces two problems:
1) Mixed-timescales means independent cascades
2) Initially independent cascades can then overlap (coalesce)

(1)

(2)

We use “causal webs” to generalize avalanches 
• Use network structure to identify independent cascades
• Overlapping cascades form a single “causal web”
• Details, see: R. V. Williams-Garcia 2017
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Model: The Branching Process
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Basic properties of neurons 

• Are directed computational elements

• All or nothing electrical response

• Sum inputs from multiple parents

The branching process:
Start a network, activate single 
neuron. 
Each time step, each active 
neuron independently activates 
its daughters with probability 

In the absence of noise, the probability neuron activates at time , 
given that it has ,௧ parents active at time is:



Model: The Branching Process with Input
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The probability neuron activates at time , given that it has ,௧

parents active at time is:

The branching process with input:
• Each time step, each active neuron independently activates its 

daughters with probability 
• Each time step, each neuron independently activates with 

probability .



Avalanches without timescale separation

• Subcritical region has finite 
avalanches

• Supercritical region has a 
percolating cluster

• Correlation length and average 
cluster size diverge on critical line

Node in directed 4-regular graph
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Avalanches without timescale separation
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Spreading probability, 
Circles are simulations on N=107 graphs, solid lines 
are on loop-free (“infinite”) lattices



Avalanches without timescale separation
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Avalanches without timescale separation
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Avalanches without timescale separation

• Exponents are from directed and undirected percolation respectively
• Tested numerically on random networks with different exponents
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Critical phase diagram
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Critical phase diagram

Directed 
percolation
exponents

Undirected 
percolation
exponents
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Critical phase diagram

Directed 
percolation
exponents

Undirected 
percolation
exponents

Branching 
ratio of 1
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Critical phase diagram

Directed 
percolation
exponents

Undirected 
percolation
exponents

Branching 
ratio of 1

Max. “dynamic” 
susceptibility
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Conclusions

• Criticality is still possible, even with strong 
driving

• External input changes the universality 
class to undirected percolation

• Other markers of directed percolation 
(dynamic susceptibility, branching ratio=1) 
don’t capture criticality
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Scaling relation for size and time

• satisfied for directed and undirected regimes respectively

with ( being and 
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𝜎𝜈𝑧 exponent
𝛼 exponent



Clusters grow by merging on large scales
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Self-consistency equations
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The active fraction self-consistency equation:

Generating 
functions


