Avalanche criticality during ferroic switching

Blai Casals

blaicasals@gmail.com

Avalanche 2022 Debrecen

1 september 2022

@blaicasals

1

Where I am

UNIVERSITY OF CAMBRIDGE

Prof. Ekhard Salje

Prof. Gustau Catalan

Next month: Physics Faculty

Domain walls properties

Domain motion on:

Ferroelectrics

Ferroelastics

Ferrowrinkles

Ferromagnetics

Ferroic materials under field

M. Oppel. J. Phys. D: Appl. Phys. 45 (2012)

Domain walls (DW)

5

Zoology of domain wall properties

J. Phys.: Condens. Matter 10 (1998) L377-L380. Printed in the UK PII: S0953-8984(98)92366-9 Superconductivity LETTER TO THE EDITOR Sheet superconductivity in twin walls: experimental evidence of WO_{3-x} Alison Aird and Ekhard K H Salje IRC in Superconductivity and Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Conduction nature ARTICLES Οu materials PUBLISHED ONLINE: 25 JANUARY 2009 | DOI: 10.1038/NMAT2373 Conduction at domain walls in oxide multiferroics J. Seidel^{1,2}*[†], L. W. Martin^{2,3}*, Q. He¹, Q. Zhan², Y.-H. Chu^{2,3,4}, A. Rother⁵, M. E. Hawkridge², P. Maksymovych⁶, P. Yu¹, M. Gajek¹, N. Balke¹, S. V. Kalinin⁶, S. Gemming⁷, F. Wang¹, G. Catalan⁸, J. F. Scott⁸, N. A. Spaldin⁹, J. Orenstein^{1,2} and R. Ramesh^{1,2,3} week ending 13 DECEMBER 2013 PHYSICAL REVIEW LETTERS PRL 111, 247603 (2013) Polarity Pwall Domains within Domains and Walls within Walls: Evidence for Polar Domains [001] in Cryogenic SrTiO₃ [010 SrTiO₃ E. K. H. Salje,* O. Aktas, and M. A. Carpenter LaAlO₃ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom Blai Casals et al, PRL 2018 V. V. Laguta CaTiO₃ Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague, Czech Republic J.F. Scott

Zoology of domain wall properties

Magnetism

pubs.acs.org/NanoLett

Magnetic Imaging of Domain Walls in the Antiferromagnetic Topological Insulator ${\sf MnBi}_2{\sf Te}_4$

Paul M. Sass, Wenbo Ge, Jiaqiang Yan, D. Obeysekera, J. J. Yang, and Weida Wu*

Polarity on ferromagnet ISSN 0021-3640, JETP Letters, 2007, Vol. 86, No. 2, pp. 115–118. © Pleiades Publishing, Ltd., 2007. Original Russian Text © A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, A.P. Pyatakov, 2007, published in Pis'ma v Zhurnal Éksperimental'noï i Teoreticheskoï Fiziki, 2007, Vol. 86, No. 2, pp. 124-127 **Magnetoelectric Control of Domain Walls** in a Ferrite Garnet Film A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, and A. P. Pyatakov nature ARTICLES materials Switch Polar PUBLISHED ONLINE: 18 SEPTEMBER 2017 | DOI: 10.1038/NMAT4966 e Imaging and tuning polarity at SrTiO₃ domain walls $\Delta V (\mu V)$ Yiftach Frenkel¹, Noam Haham¹, Yishai Shperber¹, Christopher Bell², Yanwu Xie^{3,4,5}, Zhuoyu Chen⁵, Yasuyuki Hikita³, Harold Y. Hwang^{3,5}, Ekhard K. H. Salje^{6,7} and Beena Kalisky^{1*}

Origin flavour of the DW properties

How a domain wall move?

Domain wall motion

 $PDF(\Delta x) \sim \Delta x^{-\tau}$

Strategies to control the DW motion / position

Coupling/pinning with the topography

Defects density

Strategies to control the DW motion / position

Writing (contacts, AFM, ...)

Domain motion on:

Ferroelectrics **Ferroelastics** Ferrowrinkles **Ferromagnetics**

Measuring avalanches on ferroelectrics

R. Harrison, E. K. H. Salje. Appl. Phys. Lett. (2010)

B. Casals et al., APL Mater. 8, 011105 (2020)

/min²)

Velocity² (

The Experiment, imaging pattern changes

Simultaneous measurement:

Birefringence images and displacement current

BaTiO₃ (111)

PMN-PT (001) (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3], x=0.32

Two Ferroelectrics

BaTiO₃ (111)

Simple domain pattern with parallel DWs

PMN-PT (001) (1-x)[Pb(Mg_{1/3}Nb_{2/3})O₃]-x[PbTiO₃], x=0.32

Complex domain pattern with junctions of DWs

Pixel by Pixel analysis

$$J_{ij} = \left(\frac{dB_{ij}}{dt}\right)^2 J_{ij} > \text{threshold}$$

N, Activity (# areas) A, Areas **P, Perimeters** 17

Pixel by Pixel analysis

Ferroelectric switching

Avalanches during FE switching, PMN-PT

Е

P

5

20

4

-- A

H_D and τ during FE switching

Spatiotemporal mapping, PMN-PT

PMN-PT, BaTiO₃

 $0+\delta t \vee 100+\delta t \vee 200+\delta t \vee 300+\delta t \vee 400+\delta t \vee 500+\delta t \vee$

Jerk accumulation map

23

 $0+\delta t \vee 50+\delta t \vee 100+\delta t \vee 150+\delta t \vee 200+\delta t \vee 250+\delta t \vee$

Avalanche criticality in ferroelectrics switching

Domain motion on:

Ferroelectrics **Ferroelastics** Ferrowrinkles **Ferromagnetics**

Domain wall interaction change the dynamics

Aspect ratio, domain pattern

Wrinkle, film on a viscoelastic

PDMS (500 µm)

Au (50 nm)

Si ′

Wrinkle domains?

Wrinkle angle

Ferrowrinkle, wrinkles as ferroelastics

0

.90

Wrinkles as ferroelastics

All animals in the same field of view

Dislocacions

Domain motion on:

Ferroelectrics **Ferroelastics** Ferrowrinkles **Ferromagnetics**

Ni thin film

Magnetic waves, magnetoelastic coupling

PHYSICAL REVIEW LETTERS 124, 137202 (2020)

Editors' Suggestion

Featured in Physics

Generation and Imaging of Magnetoacoustic Waves over Millimeter Distances

Blai Casals⁽⁰⁾,^{1,‡} Nahuel Statuto⁽⁰⁾,^{2,§} Michael Foerster⁽⁰⁾,³ Alberto Hernández-Mínguez⁽⁰⁾,⁴ Rafael Cichelero⁽⁰⁾,^{1,†} Peter Manshausen⁽⁰⁾,^{1,||} Ania Mandziak⁽⁰⁾,^{3,5} Lucía Aballe⁽⁰⁾,³ Joan Manel Hernàndez⁽⁰⁾,^{2,6} and Ferran Macià⁽⁰⁾,^{1,2,6,*}

Magnetoacustic waves

(a

411

(e) 50

(f) 375 MHz

(g) 250 MHz

(h) 125 MHz

B. Casals et al, PRL 124 (2020)

Magnetoresistance under SAW

Change of dynamics, wave-wall interaction

Domain wall ressonance

Micromagnetic simulations

Temperature changes? Eduard Vives, Michela Romanini

It can be observed with MOKE

Change of dynamics, wave-wall interaction

Köszönöm a figyelmet!

Thanks to: Ekhard Salje, Guillaume Nataf, David Pesquera, Gustau Catalan, Jordi Baró

Funding: EPSRC

Engineering and Physical Sciences Research Council

i Nanotecnologia

Juan de la Cierva Incorporación 2021

Blai Casals

Avalanche 2022 Debrecen

1 september 2022

@blaicasals

Eduard Vives, Michela Romanini UB

Sequence 11 (450 MHz)

Correlation betwen criticallity and fractality

Statistical model (collapse model) $N_a(t) = f(t)N_s(t-1) + g(t)$

B. Casals, E. K.H. Salje, PRE 2021

Ferroelectrics, ferroquakes

Earthquakes since 1970 in mediterranean united nations

Ferroelectrics, neuromorphics

Neuromorphic computing

Ferroelectric materials for neuromorphic computing

Cite as: APL Mater. 7, 091109 (2019): doi: 10.1063/1.5108562 Submitted: 30 April 2019 • Accepted: 5 September 2019 • Published Online: 19 September 2019

S. Oh, 💿 H. Hwang, 💿 and I. K. Yoo^{a)} 💿

Neuronal Avalanches Differ from Wakefulness to Deep Sleep – Evidence from Intracranial Depth Recordings in Humans

Viola Priesemann 🖾, Mario Valderrama, Michael Wibral, Michel Le Van Quyen

Published: March 21, 2013 • https://doi.org/10.1371/journal.pcbi.1002985

ARTICLE

https://doi.org/10.1038/s41467-020-16548-3 OPEN

() Check for updates

Relation between criticality, taskperformance

Control of criticality and computation in spiking neuromorphic networks with plasticity

Benjamin Cramer^{1⊠}, David Stöckel¹, Markus Kreft¹, Michael Wibral², Johannes Schemmel¹, Karlheinz Meier¹ & Viola Priesemann ^{3,4,5⊠}

From unit cell to the sky

Same ferroelectric sample

Same material, different measurements

"Listen"

"Touch"

"Watch"

F	Coustic Emission	Displacement current	Imaging patern changes
	Strain changes	Polarization changes	Polarization and Strain
References	:		
Phase transition	BaTiO ₃ , ε=1.35	BaTiO ₃ ,PMNPT, ε=1.3 ε=1.5	STO, LAO (Ferroelastic)
Ferroelectri Switching	c BaTiO ₃ , ε=1.65	PZT ε=1.61	ε=1.4 – 1.6

Same sample for all measurements, same energy exponent?

 $PDF(E) \sim E^{-\epsilon}$

Same dynamics

Avalanches from charged domain wall motion in BaTiO₃ during ferroelectric switching

PMN-PT under electric field

CAMBRIDGE

а

Single domain analysis, BaTiO₃

CAMBRIDGE

Ferroics and Barkhausen

Domain wall (DW) by optics

. . .

DW

Summary and conclusions

CAMBRIDGE

Anticorrelation between τ and H_D

 τ = 1.66 (unrelaxed mean-field) at the Coercive field,

 τ = 2.2 (integrated mean-field) before and after Ec.

Avalanches during FE switching, BaTiO₃

UNIVERSITY OF CAMBRIDGE

59

 τ = 1.66 (Mean-field) at the coercive field

Same dynamics

Avalanches from charged domain wall motion in BaTiO₃ during ferroelectric switching

Ferroelectrics, beyond memories

FeRAM

Neuromorphic computing

Ferroelectric materials for neuromorphic computing

ARTICLE

https://doi.org/10.1038/s41467-020-16548-3 OPEN

(Check for updates

criticality, taskperformance

Control of criticality and computation in spiking neuromorphic networks with plasticity

Benjamin Cramer¹^{III}, David Stöckel¹, Markus Kreft¹, Michael Wibral², Johannes Schemmel¹, Karlheinz Meier¹ & Viola Priesemann^{3,4,5}^{III}

Avalanche statistics, power law distribution

Snow avalanches

Landslides

Earthquakes

GLOBAL SEISMICITY

Neuronal activity

