Avalanche-size statistics in a Burridge-Knopoff type spring-block model

Attila Gergely, András Kuki, Sándor Lipcsei and Néda Zoltán

Department of Physics, Babeş-Bolyai University, M. Kogălniceanu nr. 1, 400084, Cluj-Napoca, Romania

Aims:

Similar study:

- Development of a treadmill-based setup for the experimental study of • the Burridge-Knopoff type spring-block system
- Studying the system to find interesting dynamics (avalanches,...) •

Interesting chaotic, periodic and guasiperiodic behaviors

Reproduction of the observed behaviors using a simple computational model

Varamashvili, Nodar, et al. "Mass-movement and seismic processes study using Burridge-Knopoff laboratory and mathematical models." JOURNAL OF THE GEORGIAN GEOPHYSICAL SOCIETY 18.18 (2015).

Experimental setup

snapshot of the dynamics

image processing algorithm to locate the blocks

The position of the first block

quasi-periodic behavior -> v=0.4km/h

Stick-Slip behavior (avalanches) -> v=0.1km/h

Avalanche definition

• The energy of the avalanche is the difference between the initial and final kinetic energies of the blocks

Implementation:

- Identification of the i-th local minimum in kinetic energy
- Identification of the first local maximum after the i-th minimum in the kinetic energy
- The energy assigned to the avalanche

dynamical model

The spring force acting on the blocks

$$f_s = \begin{cases} i = 0 : -k_p \cdot x_i + k_c \cdot (x_{i+1} - x_i) \\ i = \overline{1, N - 1} : -k_p \cdot x_i + k_c \cdot (x_{i+1} - 2 \cdot x_i + x_{i-1}) \\ i = N : -k_p \cdot x_i + k_c \cdot (x_{i-1} - x_i) \end{cases}$$

Total resultant force acting on the blocks

$$f_{i} = \begin{cases} |f_{s}| > F_{c} : f_{s} - sign(\dot{x}_{i} - v_{cb}) \cdot F_{c} \cdot \alpha & F_{c} \rightarrow \text{dynamic friction force} \\ \dot{x}_{i} - v_{cb} = 0 \text{ and } |f_{s}| <= F_{c} : 0 & F_{c} \cdot \alpha \rightarrow \text{dynamic friction force} \\ |\dot{x}_{i} - v_{cb}| > v_{rstick} \text{ and } |f_{s}| <= F_{c} : f_{s} - sign(\dot{x}_{i} - v_{cb}) \cdot F_{c} \cdot \alpha & \text{sticking} \end{cases}$$

$$f_{i} = \begin{cases} |f_{s}| > F_{c} : f_{s} - sign(\dot{x}_{i} - v_{cb}) + F_{c} \cdot \alpha & \text{sticking} \\ |\dot{x}_{i} - v_{cb}| < v_{rstick} \text{ and } |f_{s}| <= F_{c} \text{ and } sign(\dot{x}_{i} - v_{cb}) = sign(f_{s}) : \\ f_{s} - sign(\dot{x}_{i} - v_{cb}) \cdot F_{c} \cdot \alpha & \text{sticking} \\ |\dot{x}_{i} - v_{cb}| < v_{rstick} \text{ and } |f_{s}| <= F_{c} \text{ and } sign(\dot{x}_{i} - v_{cb}) \neq sign(f_{s}) : \\ 0 \text{ (and } \dot{x}_{i} \rightarrow v_{cb}) & \\ \ddot{x}_{i} \cdot m = f_{i} \end{cases}$$

- $k_p \longrightarrow$ pooling spring spring constant
- $k_c \longrightarrow$ coupling spring spring constant
- $m \longrightarrow mass of bodies$
- Static friction force $\boldsymbol{\Gamma}$

Numerical implementation

- The simulations were performed in C++.
- The equations of motion were integrated using the 4 order Runge Kutta method
- The experimentally obtained Stick-Slip and periodic behaviors were successfully reproduced

Stick-Slip behavior

 $\alpha = 0.4, \ v_{cb} = 0.02$

periodic behavior

 $\alpha = 0.5, v_{cb} = 0.05$

spectral entropy

spectral entropy calculated for experiments

Low SE -> periodic behaviour

Powell G.E., Percival I.C. // J. Phys. A: Math. Gen. 1979. V. 12. № 11. P. 2053–2071.http://dx.doi.org/10.1088/0305-4470/12/11/017

Spectral Entropy

 $N_{body} = 5, \ dt = 5 \cdot 10^{-4}$ of $v_{rstick} = 5 \cdot 10^{-5}, \ F_c = 1$

Periodic behavior -> low spectral entropy

Stick-Slip behavour -> high spectral entropy

Conclusions

- simple experimental realization of the Burridge-Knopoff type spring-block model by using a spring-block chain on a treadmill
- The experiments show qualitatively different behavior in different speed regimes
- Power-law type scaling for the avalanche size distribution as a function of avalanche energy
- The simple computer model reproduces the main features of the observed dynamics
- Similar avalanche size scaling to the one observed for earthquakes

Numerical implementation

Numerical results

videok